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PREFACE

MATLAB is a numeric computation software for engineering and scientific
calculations. MATLAB is increasingly being used by students, researchers,
practicing engineers and technicians. The causes of MATLAB popularity are
legion. Among them are its iterative mode of operation, built-in functions,
simple programming, rich set of graphing facilities, possibilities for writing
additional functions, and its extensive toolboxes.

The goals of writing this book are (1) to provide the reader with simple, easy,
hands-on introduction to MATLAB; (2) to demonstrate the use of MATLAB for
solving electronics problems; (3) to show the various ways MATLAB can be
used to solve circuit analysis problems; and (4) to show the flexibility of
MATLAB for solving general engineering and scientific problems.

Audience

The book can be used by students, professional engineers and technicians. The
first part of the book can be used as a primer to MATLAB. It will be useful to
all students and professionals who want a basic introduction to MATLAB.
Parts 2 and 3 are for electrical and electrical engineering technology students and
professionals who want to use MATLAB to explore the characteristics of
semiconductor devices and the application of MATLAB for analysis and
design of electrical and electronic circuits and systems.

Organization

The book is divided into three parts: Introduction to MATLAB, Circuit analysis
applications using MATLAB, and electronics applications with MATLAB. It is
recommended that the reader work through and experiment with the examples at
a computer while reading Chapters 1, 2, and 3. The hands-on approach is one of
the best ways of learning MATLAB.

Part II consists of Chapters 4 to 8.  This part covers the applications of
MATLAB in circuit analysis. The topics covered in Part II are dc analysis,
transient analysis, alternating current analysis, and Fourier analysis. In addition,
two-port networks are covered. I have briefly covered the underlying theory and
concepts, not with the aim of writing a textbook on circuit analysis and
electronics.  Selected problems in circuit analysis have been solved using
MATLAB.
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Part III includes Chapters 9, 10, 11 and 12. The topics discussed in this part are
diodes, semiconductor physics, operational amplifiers and transistor circuits.
Application of MATLAB for problem solving in electronics is discussed.
Extensive examples showing the use of MATLAB for solving problems in
electronics are presented.

Each chapter has its own bibliography and exercises.

Text Diskette

Since the text contains a large number of examples that illustrate electronics
and circuit analysis principles and applications with MATLAB, a diskette is
included that contains all the examples in the book. The reader can run the
examples without having to enter the commands. The examples can also be
modified to suit the needs of the reader.
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CHAPTER ONE

MATLAB FUNDAMENTALS

MATLAB is a numeric computation software for engineering and scientific
calculations. The name MATLAB stands for MATRIX LABORATORY.
MATLAB is primarily a tool for matrix computations. It was developed by
John Little and Cleve Moler of MathWorks, Inc. MATLAB was originally
written to provide easy access to the matrix computation software packages
LINPACK and EISPACK.

MATLAB is a high-level language whose basic data type is a matrix that does
not require dimensioning. There is no compilation and linking as is done in
high-level languages, such as C or FORTRAN. Computer solutions in
MATLAB seem to be much quicker than those of a high-level language such
as C or FORTRAN. All computations are performed in complex-valued dou-
ble precision arithmetic to guarantee high accuracy.

MATLAB has a rich set of plotting capabilities. The graphics are integrated in
MATLAB. Since MATLAB is also a programming environment, a user can
extend the functional capabilities of MATLAB by writing new modules.

MATLAB has a large collection of toolboxes in a variety of domains. Some
examples of MATLAB toolboxes are control system, signal processing, neural

network, image processing, and system identification. The toolboxes consist
of functions that can be used to perform computations in a specific domain.

1.1 MATLAB BASIC OPERATIONS

When MATLAB is invoked, the command window will display the prompt >>.
MATLAB is then ready for entering data or executing commands. To quit
MATLAB, type the command

exit or quit
MATLAB has on-line help. To see the list of MATLAB’s help facility, type

help
The help command followed by a function name is used to obtain informa-

tion on a specific MATLAB function. For example, to obtain information on
the use of fast Fourier transform function, fft, one can type the command
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help fft

The basic data object in MATLAB is a rectangular numerical matrix with real
or complex elements. Scalars are thought of as a 1-by-1 matrix. Vectors are
considered as matrices with a row or column. MATLAB has no dimension
statement or type declarations. Storage of data and variables is allocated
automatically once the data and variables are used.

MATLAB statements are normally of the form:
variable = expression

Expressions typed by the user are interpreted and immediately evaluated by the
MATLAB system. If a MATLAB statement ends with a semicolon, MATLAB
evaluates the statement but suppresses the display of the results. MATLAB
is also capable of executing a number of commands that are stored in a file.
This will be discussed in Section 1.6. A matrix

O 2 30

A=2 3 47
B 4 5H

may be entered as follows:
A=[123;234;345];,

Note that the matrix entries must be surrounded by brackets [ ] with row
elements separated by blanks or by commas. The end of each row, with the
exception of the last row, is indicated by a semicolon. A matrix A can also be
entered across three input lines as

A=[123
234
3 45];

In this case, the carriage returns replace the semicolons. A row vector B with
four elements

B=[69121518]

can be entered in MATLAB as
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B=[69 1215 18];

or
B=1[6,9,12,15,18]

For readability, it is better to use spaces rather than commas between the ele-
ments. The row vector B can be turned into a column vector by transposition,
which is obtained by typing

C=B
The above results in

C=
6
9
12
15
18

Other ways of entering the column vector C are

C=1[6
9
12
15
18]

or
C =16;9;12; 15; 18]

MATLAB is case sensitive in naming variables, commands and functions.
Thus b and B are not the same variable. If you do not want MATLAB to be
case sensitive, you can use the command

casesen off

To obtain the size of a specific variable, type size (). For example, to find the
size of matrix A, you can execute the following command:

size(A)
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The result will be a row vector with two entries. The first is the number of
rows in A, the second the number of columns in A.

To find the list of variables that have been used in a MATLAB session, type
the command

whos
There will be a display of variable names and dimensions. Table 1.1 shows

the display of the variables that have been used so far in this book:

Table 1.1
Display of an output of whos command

Name Size Elements | Byte Density | Complex
A 3by3 9 72 Full No
B 1by5 5 40 Full No
C S5byl 5 40 Full No
ans 1 by?2 2 16 Full No

The grand total is 21 elements using 168 bytes.

Table 1.2 shows additional MATLAB commands to get one started on
MATLAB. Detailed descriptions and usages of the commands can be obtained
from the MATLAB help facility or from MATLAB manuals.

Table 1.2
Some Basic MATLAB Commands

Command | Description

% Comments. Everything appearing after % com-
mand is not executed.

demo Access on-line demo programs

length Length of a matrix

clear Clears the variables or functions from workspace

cle Clears the command window during a work session

clg Clears graphic window

diary Saves a session in a disk, possibly for printing at a
later date
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1.2 MATRIX OPERATIONS

The basic matrix operations are addition(+), subtraction(-), multiplication (*),
and conjugate transpose(‘) of matrices. In addition to the above basic opera-
tions, MATLAB has two forms of matrix division: the left inverse operator \
or the right inverse operator /.

Matrices of the same dimension may be subtracted or added. Thus if E and F
are entered in MATLAB as

E=[723;436;815];

F=[142;675;191];
and

then, matrices G and H will appear on the screen as

G=
6 -2 1
2 4 1
7 -8 4

H=
8 6 5
10 10 11
9 10 6

A scalar (1-by-1 matrix) may be added to or subtracted from a matrix. In this
particular case, the scalar is added to or subtracted from all the elements of an-
other matrix. For example,

J=H~+1
gives
J=
9 7 6
11 11 12
10 11 7

Matrix multiplication is defined provided the inner dimensions of the two op-
erands are the same. Thus, if X is an n-by-m matrix and Y is i-by-j matrix,
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X*Y is defined provided m is equal to i. Since E and F are 3-by-3 matrices,
the product

Q=E*F
results as
Q:
22 69 27
28 91 29
19 84 26

Any matrix can be multiplied by a scalar. For example,

2*Q
gives
ans =
44 138 54
56 182 58
38 168 52
Note that if a variable name and the “=" sign are omitted, a variable name ans

is automatically created.

Matrix division can either be the left division operator \ or the right division
operator /. The right division a/b, for instance, is algebraically equivalent to

a
— while the left division a\b is algebraically equivalent to —.
a

If Z*I =V and Z is non-singular, the left division, Z|V is equivalent to
MATLAB expression

I =inv(Z)*V

where inv is the MATLAB function for obtaining the inverse of a matrix. The
right division denoted by V/Z is equivalent to the MATLAB expression

1=V *inv(Z)

There are MATLAB functions that can be used to produce special matrices.
Examples are given in Table 1.3.



Table 1.3

Some Utility Matrices
Function Description

ones(n,m) Produces n-by-m matrix with all the elements being
unity

eye(n) gives n-by-n identity matrix

zeros(n,m) Produces n-by-m matrix of zeros

diag(A) Produce a vector consisting of diagonal of a square
matrix A

1.3 ARRAY OPERATIONS

Array operations refer to element-by-element arithmetic operations. Preceding
the linear algebraic matrix operations, * / \ * | by a period (.) indicates an array
or element-by-element operation. Thus, the operators .* , .\, ./, .~ , represent
element-by-element multiplication, left division, right division, and raising to
the power, respectively. For addition and subtraction, the array and matrix op-
erations are the same. Thus, + and .+ can be regarded as an array or matrix
addition.

If A1 and B1 are matrices of the same dimensions, then A1.*B1 denotes an ar-
ray whose elements are products of the corresponding elements of Al and B1.

Thus, if
Al=[276
89 10];
Bl1=[643
234];
then
Cl =A1.*B1
results in
Cl=
12 28 18
16 27 40

© 1999 CRC PressLLC
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An array operation for left and right division also involves element-by-element
operation. The expressions A1./B1 and A1.\B1 give the quotient of element-
by-element division of matrices Al and B1. The statement

D1 =Al1./B1
gives the result
D1 =
0.3333 1.7500 2.0000
4.0000 3.0000 2.5000
and the statement
El =Al1.\Bl
gives
El =

3.0000 0.5714 0.5000
0.2500 0.3333 0.4000

The array operation of raising to the power is denoted by .. The general
statement will be of the form:
qg=rl."sl

If r1 and s1 are matrices of the same dimensions, then the result q is also a ma-
trix of the same dimensions. For example, if

rl=[735];

sl=[243];
then

ql =rl.7sl

gives the result

ql =
49 81 125
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One of the operands can be scalar. For example,

q2=rl."2
q3 =(2).7sl
will give
q2 =
49 9 25
and
q3 =
4 16 8

Note that when one of the operands is scalar, the resulting matrix will have the
same dimensions as the matrix operand.
1.4 COMPLEX NUMBERS

MATLAB allows operations involving complex numbers. Complex numbers
are entered using function i or j. For example, a number z = 2 + j2 may be

entered in MATLAB as

z=2+2%
or

7= 2+2%]

Also, a complex number za

za = 242 exp[(71/ 4) ]
can be entered in MATLAB as
za = 2*sqrt(2)*exp((pi/4)*)
It should be noted that when complex numbers are entered as matrix elements

within brackets, one should avoid any blank spaces. For example,
vy =3+ j4 isrepresented in MATLAB as



y = 3+4%j
If spaces exist around the + sign, such as
u=3+4%
MATLAB considers it as two separate numbers, and y will not be equal to u.

If w is a complex matrix given as

d+j1 2-;20
W=
B+,2 4+;3H
then we can represent it in MATLAB as
w=[14] 2-2%); 3+42% 443%]
which will produce the result
W=
1.0000 + 1.00001 2.0000 - 2.00001
3.0000 +2.00001 4.0000 + 3.0000i

If the entries in a matrix are complex, then the “prime” () operator produces
the conjugate transpose. Thus,

wp =W
will produce

wp =
1.0000 - 1.00001 3.0000 - 2.0000i
2.0000 +2.00001 4.0000 - 3.00001

For the unconjugate transpose of a complex matrix, we can use the point trans-
pose (.’) command. For example,

wt=w.'

will yield

© 1999 CRC PressLLC
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1.0000 + 1.00001 3.0000 + 2.00001
2.0000 - 2.00001 4.0000 + 3.00001

1.5 THE COLON SYMBOL (:)
The colon symbol (:) is one of the most important operators in MATLAB. It
can be used (1) to create vectors and matrices, (2) to specify sub-matrices and
vectors, and (3) to perform iterations. The statement
tl =1:6
will generate a row vector containing the numbers from 1 to 6 with unit incre-
ment. MATLAB produces the result

1 2 3 4 5 6

Non-unity, positive or negative increments, may be specified. For example,
the statement

t2 =3:-0.5:1
will result in

t2 =
3.0000 2.5000 2.0000 1.5000 1.0000

The statement

t3 =[(0:2:10);(5:-0.2:4)]
will result in a 2-by-4 matrix

t3 =

0 2.0000 4.0000 6.0000 8.0000 10.0000
5.0000 4.8000 4.6000 4.4000 4.2000 4.0000

Other MATLAB functions for generating vectors are linspace and logspace.
Linspace generates linearly evenly spaced vectors, while logspace generates



logarithmically evenly spaced vectors. The usage of these functions is of the
form:

linspace(i_value, f value, np)
logspace(i_value, f value, np)

where
i_value is the initial value

f value is the final value

np is the total number of elements in the vector.
For example,

t4 = linspace(2, 6, 8)
will generate the vector

t4 =
Columns 1 through 7

2.0000 2.5714 3.1429 3.7143 4.2857 4.8571
5.4286

Column 8
6.0000

Individual elements in a matrix can be referenced with subscripts inside paren-
theses. For example, t2(4) is the fourth element of vector t2. Also, for matrix
t3, t3(2,3) denotes the entry in the second row and third column. Using the co-
lon as one of the subscripts denotes all of the corresponding row or column.
For example, t3(:,4) is the fourth column of matrix t3. Thus, the statement

t5 =1t3(:,4)
will give
t5=
6.0000
4.4000
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Also, the statement t3(2,:) is the second row of matrix t3. That is the statement
t6 =1t3(2,:)
will result in

t6 =
5.0000 4.8000 4.6000 4.4000 4.2000 4.0000

If the colon exists as the only subscript, such as t3(:), the latter denotes the
elements of matrix t3 strung out in a long column vector. Thus, the statement

t7 =1t3(2)
will result in

t7 =

0
5.0000
2.0000
4.8000
4.0000
4.6000
6.0000
4.4000
8.0000
4.2000
10.0000
4.0000

Example 1.1
The voltage, v, across a resistance is given as (Ohm’s Law), v = Ri, where

[ is the current and R the resistance. The power dissipated in resistor R is
given by the expression

P=Ri’
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If R =10 Ohms and the current is increased from 0 to 10 A with increments
of 2A, write a MATLAB program to generate a table of current, voltage and
power dissipation.

Solution:
MATLAB Script

diary ex1 1.dat

% diary causes output to be written into file ex1 1.dat

% Voltage and power calculation

R=10; % Resistance value

i=(0:2:10); % Generate current values

v=1.*R; % array multiplication to obtain voltage
p=(1."2)*R; % power calculation

sol=[i v p] % current, voltage and power values are printed
diary

% the last diary command turns off the diary state

MATLAB produces the following result:

sol =
Columns 1 through 6

0 2 4 6 8 10
Columns 7 through 12

0 20 40 60 80 100
Columns 13 through 18

0 40 160 360 640 1000

Columns 1 through 6 constitute the current values, columns 7 through 12 are
the voltages, and columns 13 through 18 are the power dissipation values.
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1.6 M-FILES

Normally, when single line commands are entered, MATLAB processes the
commands immediately and displays the results. MATLAB is also capable of
processing a sequence of commands that are stored in files with extension m.
MATLARB files with extension m are called m-files. The latter are ASCII text
files, and they are created with a text editor or word processor. To list m-files
in the current directory on your disk, you can use the MATLAB command
what. The MATLAB command, type, can be used to show the contents of a
specified file. M-files can either be script files or function files. Both script
and function files contain a sequence of commands. However, function files
take arguments and return values.

1.6.1  Script files

Script files are especially useful for analysis and design problems that require
long sequences of MATLAB commands. With script file written using a text
editor or word processor, the file can be invoked by entering the name of the
m-file, without the extension. Statements in a script file operate globally on
the workspace data. Normally, when m-files are executing, the commands are
not displayed on screen. The MATLAB echo command can be used to view
m-files while they are executing. To illustrate the use of script file, a script
file will be written to simplify the following complex valued expression z.

Example 1.2

Simplify the complex number z and express it both in rectangular and polar
form.

_ (34 j4)(5+,2)(2060")
B 3+ j6)(1+ j2)

Solution:

The following program shows the script file that was used to evaluate the
complex number, z, and express the result in polar notation and rectangular
form.

MATLAB Script

diary ex1 2.dat
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% Evaluation of Z

% the complex numbers are entered

Z1 = 3+4%j;

72 = 5+2%j;

theta = (60/180)*pi; % angle in radians

73 = 2*exp(j*theta);

74 = 3+6%j;

75 = 1+2%j;

% Z rect is complex number Z in rectangular form

disp('Z in rectangular form is'); % displays text inside brackets
Z rect=Z1*¥7Z2*Z3/(ZA+Z5);

Z rect

Z mag = abs (Z rect); % magnitude of Z

Z angle = angle(Z rect)*(180/pi); % Angle in degrees
disp('complex number Z in polar form, mag, phase'); % displays text
%inside brackets

Z polar =[Z mag, Z angle]

diary

The program is named ex1 2.m. It is included in the disk that accompanies
this book. Execute it by typing ex1 2 in the MATLAB command window.
Observe the result, which should be

Z in rectangular form is

Z rect=
1.9108 + 5.70951

complex number Z in polar form (magnitude and phase) is

Z polar =
6.0208 71.4966

1.6.2 Function Files

Function files are m-files that are used to create new MATLAB functions.
Variables defined and manipulated inside a function file are local to the func-
tion, and they do not operate globally on the workspace. However, arguments
may be passed into and out of a function file.

The general form of a function file is
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function variable(s) = function _name (arguments)

% help text in the usage of the function

%

end
To illustrate the usage of function files and rules for writing m-file function, let
us study the following two examples.

Example 1.3

Write a function file to solve the equivalent resistance of series connected re-
sistors, R1, R2, R3, ..., Rn.

Solution:
MATLAB Script

function req = equiv_sr(r)
% equiv_sr is a function program for obtaining

% the equivalent resistance of series

% connected resistors

% usage: req = equiv_sr(r)

% r is an input vector of length n

% req is an output, the equivalent resistance(scalar)
%

n = length(r); % number of resistors
req =sum (r); % sum up all resistors
end

The above MATLAB script can be found in the function file equiv_sr.m,
which is available on the disk that accompanies this book.

Suppose we want to find the equivalent resistance of the series connected resis-
tors 10, 20, 15, 16 and 5 ohms. The following statements can be typed in the
MATLAB command window to reference the function equiv_sr

a=[102015165];
Rseries = equiv_sr(a)
diary
The result obtained from MATLAB is
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Rseries =
66
Example 1.4
Write a MATLAB function to obtain the roots of the quadratic equation
ax’ +bx +c =0
Solution:
MATLAB Script

function rt = rt_quad(coef)

%

% rt_quad is a function for obtaining the roots of

% of a quadratic equation

% usage: rt = rt_quad(coef)

% coef is the coefficients a,b,c of the quadratic
% equation ax*x + bx + ¢ =0

% rt are the roots, vector of length 2

% coefficient a, b, ¢ are obtained from vector coef
a=coef(1); b=coef(2); c=coef(3);
int = b2 - 4*a*c;
ifint>0

srint = sqrt(int);

x1=(-b + srint)/(2*a);

x2= (-b - srint)/(2*a);
elseif int==0

x1=-b/(2%*a);

x2=x1;
elseif int <0

srint = sqrt(-int);

pl =-b/(2*a);

p2 = srint/(2*a);

x1 =pl+p2*j;

x2 =pl-p2*j;
end
rt =[x1;

x2];

end
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The above MATLAB script can be found in the function file rt_quad.m, which
is available on the disk that accompanies this book.

We can use m-file function, rt _quad, to find the roots of the following quad-
ratic equations:

(@) x> +3x+2=0
(b) x> +2x+1 =0
(c) x> -2x +3=0

The following statements, that can be found in the m-file ex] 4.m, can be
used to obtain the roots:

diary ex1 4.dat

ca=[132];

ra =r1t_quad(ca)
cb=[121];

rb = rt_quad(cb)
cc=[1-23];

rc =rt_quad(cc)
diary

Type into the MATLAB command window the statement ex] 4 and observe
the results. The following results will be obtained:

ra=
-1
-2
rb =
-1
-1
rc=

1.0000 + 1.4142i
1.0000 - 1.4142i

The following is a summary of the rules for writing MATLAB m-file func-
tions:

1) The word, function, appears as the first word in a function file. This
is followed by an output argument, an equal sign and the function name. The
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arguments to the function follow the function name and are enclosed within pa-
rentheses.

2) The information that follows the function, beginning with the % sign,
shows how the function is used and what arguments are passed. This informa-

tion is displayed if help is requested for the function name.

3) MATLAB can accept multiple input arguments and multiple output
arguments can be returned.

@) If a function is going to return more than one value, all the values
should be returned as a vector in the function statement. For example,

function [mean, variance] = data_in(x)

will return the mean and variance of a vector x. The mean and variance are
computed with the function.

&) If a function has multiple input arguments, the function statement
must list the input arguments. For example,

function [mean, variance] = data(x,n)

will return mean and variance of a vector x of length n.

(6) The last statement in the function file should be an “end” statement.
SELECTED BIBLIOGRAPHY
1. MathWorks, Inc., MATLAB, High-Performance Numeric

Computation Software, 1995.

2. Biran, A. and Breiner, M., MATLAB for Engineers, Addison-
Wesley, 1995.

3. Etter, D.M., Engineering Problem Solving with MATLAB, 2™ Edi-
tion, Prentice Hall, 1997.
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1.1

1.2

1.3

14

1.5

1.6

EXERCISES

The voltage across a discharging capacitor is
v(t) =10(1 —e™**)

Generate a table of voltage, V(%) , versus time, ¢, for t = 0 to 50
seconds with increment of 5 s.

Use MATLAB to evaluate the complex number

L= B+j6)6+j4)
(2+71)j2

+7+ 710

Write a function-file to obtain the dot product and the vector product
of two vectors a and b. Use the function to evaluate the dot and
vector products of vectors x and y, where x = (1 5 6) and

y =(2328).

Write a function-file that can be used to calculate the equivalent
resistance of n parallel connected resistors. In general, the equivalent

resistance of resistors R, R,, R, ...., R is given by

The voltage V is given as V' = RI, where R and I are resistance
matrix and I current vector. Evaluate V given that

O 2 40 agd
R:% 3 6D and [ = B

Use MATLAB to simplify the expression

y=05+j6 +3.5¢/00 +(3 +j6)ej0.3n
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1.7

1.8

Write a function file to evaluate n factorial (i.e. n!); where

n!=n(n-1)(n-2)..(2)(1)
7!
3141

Use the function to compute X =

For a triangle with sides of length a, b, and c, the area A is given as

A= /s(s—a)s —b)(s —c)
where
s=(a+b+c)/2

Write a function to compute the area given the sides of a triangle.
Use the function to compute the area of triangles with the lengths:
(a) 56,27 and43 (b) 5,12 and 13.



MATLAB has built-in functions that allow one to generate bar charts, x-y,
polar, contour and 3-D plots, and bar charts. MATLAB also allows one to
give titles to graphs, label the x- and y-axes, and add a grid to graphs. In
addition, there are commands for controlling the screen and scaling. Table 2.1
shows a list of MATLAB built-in graph functions. One can use MATLAB’s

CHAPTER TWO

PLOTTING COMMANDS

21 GRAPH FUNCTIONS

help facility to get more information on the graph functions.

Table 2.1
Plotting Functions

FUNCTION

DESRIPTION

axis

freezes the axis limits

bar

plots bar chart

contour

performs contour plots

ginput

puts cross-hair input from mouse

grid

adds grid to a plot

gtext

does mouse positioned text

histogram

gives histogram bar graph

hold

holds plot (for overlaying other plots)

loglog

does log versus log plot

mesh

performs 3-D mesh plot

meshdom

domain for 3-D mesh plot

pause

wait between plots

plot

performs linear x-y plot

polar

performs polar plot

semilogx

does semilog x-y plot (x-axis logarithmic)

semilogy

does semilog x-y plot (y-axis logarithmic)

shg

shows graph screen

stairs

performs stair-step graph

text

positions text at a specified location on graph

title

used to put title on graph

xlabel

labels x-axis

ylabel

labels y-axis
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2.2 X-Y PLOTS AND ANNOTATIONS

The plot command generates a linear x-y plot. There are three variations of the
plot command.

(a) plot(x)

(b) plot(x, y)

(©) plot(x1, y1, x2, y2, x3, y3,...,Xn, yn)
If x is a vector, the command

plot(x)
will produce a linear plot of the elements in the vector x as a function of the
index of the elements in x. MATLAB will connect the points by straight lines.
If x is a matrix, each column will be plotted as a separate curve on the same
graph. For example, if

x =[03.76.16458391];
then, plot(x) results in the graph shown in Figure 2.1.
If x and y are vectors of the same length, then the command

plot(x, y)

plots the elements of x (x-axis) versus the elements of y (y-axis). For example,
the MATLAB commands

t=0:0.5:4;
y = 6%exp(-2*0);
plot(t,y)

t

will plot the function y(t) = 6e™
The plot is shown in Figure 2.2.

at the following times: 0, 0.5, 1.0, ..., 4 .

To plot multiple curves on a single graph, one can use the plot command
with multiple arguments, such as

plot(x1, y1, x2, y2, x3, y3, ..., Xn, yn)
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Figure 2.1 Graph of a Row Vector x

The variables x1, yl, x2, y2, etc., are pairs of vector. Each x-y pair is
graphed, generating multiple lines on the plot. The above plot command
allows vectors of different lengths to be displayed on the same graph.
MATLAB automatically scales the plots. Also, the plot remains as the current
plot until another plot is generated; in which case, the old plot is erased. The
hold command holds the current plot on the screen, and inhibits erasure and
rescaling. Subsequent plot commands will overplot on the original curves.
The hold command remains in effect until the command is issued again.

When a graph is drawn, one can add a grid, a title, a label and x- and y-axes
to the graph. The commands for grid, title, x-axis label, and y-axis label are
grid (grid lines), title (graph title), xlabel (x-axis label), and ylabel (y-axis
label), respectively. For example, Figure 2.2 can be titled, and axes labeled
with the following commands:

t=10:0.5:4;

y = 6%exp(-2*1);

plot(t, y)

title('Response of an RC circuit')
xlabel('time in seconds')
ylabel('voltage in volts')

grid



Figure 2.3 shows the graph of Figure 2.2 with title, x-axis, y-axis and grid
added.

6

Figure 2.2 Graph of Two Vectors t and y
To write text on a graphic screen beginning at a point (x, y) on the graphic
screen, one can use the command

text(x, y, "text’)
For example, the statement

text(2.0, 1.5, ’transient analysis”)

will write the text, transient analysis, beginning at point (2.0,1.5). Multiple
text commands can be used. For example, the statements

plot(al,bl,a2,b2)

text(x1,y1,’voltage’)
text(x2,y2, power’)

© 1999 CRC PressLLC



will provide texts for two curves: al versus bl and a2 versus b2. The text will
be at different locations on the screen provided x1 # x2 oryl #y2.

If the default line-types used for graphing are not satisfactory, various symbols
may be selected. For example:

plot(al, b1, °*?)
draws a curve, al versus b1, using star(*) symbols, while
plot(al, b1, >*’, a2, b2, >+’)

uses a star(*) for the first curve and the plus(+) symbol for the second curve.
Other print types are shown in Table 2.2.

Response of an RC circuit
6 T T T

voltage in volts
|78 o

[RS)

0 . . ;
0 1 2 3 4
time in seconds

Figure 2.3 Graph of Voltage versus Time of a Response of an RLC
Circuit

For systems that support color, the color of the graph may be specified using

the statement:

plot(x, y, ’g’)
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implying, plot x versus y using green color. Line and mark style may be added
to color type using the command

plot(x, y, +w’)

The above statement implies plot x versus y using white + marks. Other colors
that can be used are shown in Table 2.3.

Table 2.2
Print Types
LINE-TYPES | INDICATORS | POINT INDICATORS
TYPES
solid - point .
dash -- plus +
dotted star *
dashdot - circle 0
x-mark X
Table 2.3

Symbols for Color Used in Plotting

COLOR SYMBOL
red r

green g

blue b

white w
invisible i

The argument of the plot command can be complex. If z is a complex vector,
then plot(z) is equivalent to plot(real(z), imag(z)). The following example
shows the use of the plot, title, xlabel, ylabel and text functions.
Example 2.1
For an R-L circuit, the voltage v(#)and current i(¢) are given as

v(t) =10cos(377¢)

i(t) = 5cos(377¢ +60°)
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Sketch v(¢) and i(z) for ¢ = 0 to 20 milliseconds.

Solution

MATLAB Script

% RL circuit

% current i(t) and voltage v(t) are generated; t is time
t=0:1E-3:20E-3; v = 10*cos(377*t);
a_rad = (60*pi/180); % angle in radians
i=>5%cos(377*t + a_rad);

plot(t,v,"*',t,i,'0")

title("Voltage and Current of an RL circuit')
xlabel('Sec")

ylabel("Voltage(V) and Current(mA)')
text(0.003, 1.5, 'v(t)");

text(0.009,2, "i(t)")

Figure 2.4 shows the resulting graph. The file ex2 1.m is a script file for the
solution of the problem.

Voltage(V) and Current(mA)

10

o

o

1
|43}

L
o

Voltage and Current of an RL circuit

¥ ' ' CAT
» *
¥
¥
_ 3
V(Q it) *
*
*
« _
¥
¥ *
| R |
0 0.005 0.01 0.015 0.02
Sec

Figure 2.4 Plot of Voltage and Current of an RL Circuit under
Sinusoidal Steady State Conditions
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2.3 LOGARITHMIC AND POLAR PLOTS

Logarithmic and semi-logarithmic plots can be generated using the commands
loglog, semilogx, and semilogy. The use of the above plot commands is
similar to those of the plot command discussed in the previous section. The
description of these commands are as follows:

loglog(x, y) - generates a plot of log;o(x) versus log;o(y)

semilogx(x, y) - generates a plot of log¢(x) versus linear axis of y

semilogy(X, y) - generates a plot of linear axis of x versus log(y)
It should be noted that since the logarithm of negative numbers and zero does
not exist, the data to be plotted on the semi-log axes or log-log axes should not
contain zero or negative values.
Example 2.2
The gain versus frequency of a capacitively coupled amplifier is shown below.

Draw a graph of gain versus frequency using a logarithmic scale for the
frequency and a linear scale for the gain.

Frequency Gain (dB) Frequency Gain (dB)
(Hz) (Hz)

20 5 2000 34

40 10 5000 34

80 30 8000 34

100 32 10000 32

120 34 12000 30

Solution

MATLAB Script

% Bode plot for capacitively coupled amplifier
f=[2040 80 100 120 2000 5000 8000 10000 ...

12000 15000 20000];
g=[5103032343434343230105];
semilogx(f, g)
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title('Bode plot of an amplifier')
xlabel('Frequency in Hz')
ylabel('Gain in dB')

The plot is shown in Figure 2.5. The MATLAB script file is ex2_2.m.

Bode plot of an amplifier
35 . . ;

(Gain in dB
M3 [ b
(o } hn [an ]

—_

(8]
T

1

—

o
T

1

5 1 1 1
10' 10° 10° 10" 10°

Frequency in Hz

Figure 2.5 Plot of Gain versus Frequency of an Amplifier

A polar plot of an angle versus magnitude may be generated using the
command

polar(theta, rho)

where,

theta and rho are vectors, with the theta being an angle in radians and
rho being the magnitude.
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When the grid command is issued after the polar plot command, polar grid
lines will be drawn. The polar plot command is used in the following example.

Example 2.3

— . J8 h
A complex number z can be represented as z =re’”.  The n' power of

the complex number is givenas z" =r"e”®. Ifr=12and 0 =10°, use

the polar plot to plot |Z "| versus 16 for n =1to n =36.

Solution
MATLAB Script

% polar plot of z

r=1.2; theta = 10*pi/180;

angle = O:theta:36*theta; mag = r.”(angle/theta);
polar(angle,mag)

grid

title('Polar Plot")

The polar plot is shown in Figure 2.6.

Polar Plot
90800

Figure 2.6 Polar Plot of z = 12"¢’"""
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24 SCREEN CONTROL

MATLAB has basically two display windows: a command window and a graph
window. The hardware configuration an operator is using will either display
both windows simultaneously or one at a time. The following commands can
be used to select and clear the windows:

shg - shows graph window

any key - brings back command window
cle - clears command window

clg - clears graph window

home - home command cursor

The graph window can be partitioned into multiple windows. The subplot
command allows one to split the graph window into two subdivisions or four
subdivisions. Two sub-windows can be arranged either top or bottom or left or
right. A four-window partition will have two sub-windows on top and two sub-
windows on the bottom. The general form of the subplot command is

subplot(i j k)

The digits 7 and j specify that the graph window is to be split into an i-by- j

grid of smaller windows. The digit k specifies the k ™ window for the current
plot. The sub-windows are numbered from left to right, top to bottom. For
example,

%

x =-4:0.5:4;

y =x."2; % square of x

z =x."3; % cube of x

subplot(211), plot(x, y), title('square of x')
subplot(212), plot(x, z), title('cube of x")

will plot y = x* in the top half of the graph screen and z = x° will be

plotted on the bottom half of the graph screen. The plots are shown in Figure
2.7.



square of x

20 . .
10t

0 L L

-4 -2 0

cube of x

100 . :
0 L

-100 : :

-4 -2 0

Figure 2.7 Plots of x* and x° using Subplot Commands.

The coordinates of points on the graph window can be obtained using the
ginput command. There are two forms of the command:

[x y] = ginput

[xy] = ginput(n)

e [x y] = ginput command allows one to select an unlimited number of
points from the graph window using a mouse or arrow keys. Pressing the

return key terminates the input.

* [xy] = ginput(n) command allows the selection of n points from the graph
window using a mouse or arrow keys. The points are stored in vectors x
and y. Data points are entered by pressing a mouse button or any key on
the keyboard (except return key). Pressing the return key terminates the

input.
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2.1

2.2

2.3
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EXERCISES

The repulsive coulomb force that exists between two protons in the
nucleus of a conductor is given as

F - qqu -
4me,r

1
If ¢, =g, =16x107"C, and e 899x10° Nm* / C*,

sketch a graph of force versus radius 7. Assume a radius from
1.0x10™" to 1.0x10™"* m with increments of 2.0x107" m.

The current flowing through a drain of a field effect transistor during
saturation is given as

Ips = k(VGS _I/t)z

If ¥, =10 voltand  k=25mA/V?, plot the current i
for the following values of VGS :1.5,2.0,25,..,5V.

Plot the voltage across a parallel RLC circuit given as

v(t) = 5¢* sin(10007T)
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24

2.5

2.6

2.7

Obtain the polar plotof  z =7 "e’® for 8 =15%and n =1to
20.

The table below shows the grades of three examinations of ten
students in a class.

STUDENT | EXAM #1 EXAM #2 EXAM #3
1 81 78 83
2 75 77 80
3 95 90 93
4 65 69 72
5 72 73 71
6 79 84 86
7 93 97 94
8 69 72 67
9 83 80 82
10 87 81 77

(a) Plot the results of each examination.

(b) Use MATLAB to calculate the mean and standard deviation of
each examination.

A function f'(x) is given as
f(x)=x"+3x" +4x° +2x +6
(a) Plot f(x) and

(b) Find the roots of f(x)

A message signal m(t) and the carrier signal ¢(¢) of a
communication system are, respectively:

m(t) =4cos(12072) +2 cos(240 17)
c(t) =10cos(10,00077)

A double-sideband suppressed carrier §(¢) is given as
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2.8

s(t) = m(t)c(t)
Plot m(t), c(t) and s(¢) using the subplot command.

The voltage v and current I of a certain diode are related by the
expression

i=Igexplv/(nV;)]

If I = 1.0x10™A, n =2.0and V=26 mV, plot the current

versus voltage curve of the diode for diode voltage between 0 and 0.6
volts.
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CHAPTER THREE

CONTROL STATEMENTS

31 FOR LOOPS

“FOR” loops allow a statement or group of statements to be repeated a fixed
number of times. The general form of a for loop is

for index = expression
statement group X
end

The expression is a matrix and the statement group X is repeated as many
times as the number of elements in the columns of the expression matrix. The
index takes on the elemental values in the matrix expression. Usually, the ex-
pression is something like

m:n or m:i:n

where m is the beginning value, n the ending value, and i is the increment.

Suppose we would like to find the squares of all the integers starting from 1 to
100. We could use the following statements to solve the problem:

sum = 0;
fori=1:100

sum = sum + i*2;
end
sum

For loops can be nested, and it is recommended that the loop be indented for
readability. Suppose we want to fill 10-by-20 matrix, b, with an element value
equal to unity, the following statements can be used to perform the operation.

%
n=10; % number of rows
m = 20; % number of columns
fori=1:n
forj=1:m
b(i,j) =1; % semicolon suppresses printing in the loop
end
end
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b % display the result
%

It is important to note that each for statement group must end with the word
end. The following program illustrates the use of a for loop.
Example 3.1

The horizontal displacement x(#)and vertical displacement y(¢)are given

with respect to time, 7, as

x(t) =2t
y(t) = sin(¢)

For ¢t =0 to 10 ms, determine the values of x(#) and y(¢). Use the values to
plot x(¢) versus y(t).

Solution:

MATLAB Script

%
for i=0:10
x(i+1) = 2*i;
y(i+1) = 2*sin(i);
end
plot(x.y)

Figure 3.1 shows the plots of x(#)and (7).
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Figure 3.1 Plotof x versusy.

3.2 IF STATEMENTS

IF statements use relational or logical operations to determine what steps to
perform in the solution of a problem. The relational operators in MATLAB
for comparing two matrices of equal size are shown in Table 3.1.

Table 3.1
Relational Operators

RELATIONAL MEANING
OPERATOR

< less than

<= less than or equal

> greater than

>= greater than or equal
== equal

~= not equal
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When any of the above relational operators are used, a comparison is done be-
tween the pairs of corresponding elements. The result is a matrix of ones and
zeros, with one representing TRUE and zero FALSE. For example, if

a=[123336];
b=[123456];
4=

The answer obtained is
ans =

1 1.1 0 0 1

The 1s indicate the elements in vectors a and b that are the same and Os are the
ones that are different.

There are three logical operators in MATLAB. These are shown in Table 3.2.

Table 3.2
Logical Operators

LOGICAL OPERATOR | MEANING

SYMBOL

& and
! or
~ not

Logical operators work element-wise and are usually used on 0-1 matrices,
such as those generated by relational operators. The & and ! operators com-
pare two matrices of equal dimensions. If A and B are 0-1 matrices, then A&B
is another 0-1 matrix with ones representing TRUE and zeros FALSE. The
NOT(~) operator is a unary operator. The expression ~C returns 1 where C is
zero and 0 when C is nonzero.

There are several variations of the IF statement:
» simple if statement
¢ nested if statement

e if-else statement



e if-elseif statement

e if-elseif-else statement.

¢ The general form of the simple if statement is

if logical expression 1
statement group 1
end

In the case of a simple if statement, if the logical expressionl is true, the state-
ment group 1 is executed. However, if the logical expression is false, the
statement group 1 is bypassed and the program control jumps to the statement
that follows the end statement.

*  The general form of a nested if statement is

if logical expression 1
statement group 1
if logical expression 2
statement group 2
end
statement group 3
end
statement group 4

The program control is such that if expression 1 is true, then statement groups
1 and 3 are executed. If the logical expression 2 is also true, the statement
groups 1 and 2 will be executed before executing statement group 3. If logical
expression 1 is false, we jump to statement group 4 without executing state-
ment groups 1, 2 and 3.

e  The if-else statement allows one to execute one set of statements if a
logical expression is true and a different set of statements if the logical
statement is false. The general form of the if-else statement is

if logical expression 1
statement group 1
else
statement group 2
end

© 1999 CRC PressLLC
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In the above program segment, statement group 1 is executed if logical expres-

sion 1 is true. However, if logical expression 1 is false, statement group 2 is
executed.

e If-elseif statement may be used to test various conditions before execut-
ing a set of statements. The general form of the if-elseif statement is

if logical expression 1
statement group
elseif logical expression 2
statement group2
elseif logical expression 3
statement group 3
elseif logical expression 4

statement group 4
end

A statement group is executed provided the logical expression above it is true.
For example, if logical expression 1 is true, then statement group 1 is executed.
If logical expression 1 is false and logical expression 2 is true, then statement
group 2 will be executed. If logical expressions 1, 2 and 3 are false and logical
expression 4 is true, then statement group 4 will be executed. If none of the
logical expressions is true, then statement groups 1, 2, 3 and 4 will not be exe-
cuted. Only three elseif statements are used in the above example. More elseif
statements may be used if the application requires them.

o If-elseif-else statement provides a group of statements to be executed if

other logical expressions are false. The general form of the if-elseif-else
statement is

if logical expression 1
statement group1
elseif logical expression 2
statement group 2
elseif logical expression 3
statement group 3
elseif logical expression 4
statement group4
else
statement group 5
end
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The various logical expressions are tested. The one that is satisfied is exe-
cuted. If the logical expressions 1, 2, 3 and 4 are false, then statement group 5
is executed. Example 3.2 shows the use of the if-elseif-else statement.

Example 3.2

A 3-bit A/D converter, with an analog input x and digital output y, is repre-
sented by the equation:

y=0 x<-2.5
= 255 x<-1.5
=2 -15<x<-05
= -0.5 <x< 0.5
= 05<x<1.5
= 1.5 <x< 25
=6 25 <x< 35
=7 x= 3.5

Write a MATLAB program to convert analog signal x to digital signal y. Test
the program by using an analog signal with the following amplitudes: -1.25,
2.57 and 6.0.

Solution
MATLAB Script

diary ex3_2.dat

%

y1 = bitatd_3(-1.25)
y2 = bitatd_3(2.57)
y3 = bitatd_3(6.0)
diary

function Y_dig = bitatd 3(X_analog)

%

% bitatd 3 is a function program for obtaining
% the digital value given an input analog
% signal

%

% usage: Y dig = bitatd 3(X analog)
% Y _dig is the digital number (in integer form)
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% X analog is the analog input (in decimal form)

%

if X analog <-2.5
Y dig=0;

elseif X analog >=-2.5 & X analog <-1.5
Y dig=1;

elseif X analog >=-1.5 & X analog <-0.5
Y dig=2;

elseif X analog >=-0.5 & X analog < 0.5
Y dig=3;

elseif X analog >= 0.5 & X analog < 1.5
Y dig=4;

elseif X analog >=1.5 & X analog <2.5
Y dig=75;

elseif X analog >=2.5 & X analog <3.5
Y dig=6;

else
Y dig=7;

end

Y dig;

end

The function file, bitatd 3.m, is an m-file available in the disk that accompa-
nies this book. In addition, the script file, ex3_2.m on the disk, can be used to
perform this example. The results obtained, when the latter program is exe-
cuted, are

yl=
2

y2=
6

y3=
7

3.3 WHILE LOOP

A WHILE loop allows one to repeat a group of statements as long as a speci-
fied condition is satisfied. The general form of the WHILE loop is
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while expression 1
statement group 1

end

statement group 2

When expression 1 is true, statement group 1 is executed. At the end of exe-
cuting the statement group 1, the expression 1 is retested. If expression 1 is
still true, the statement group 1 is again executed. However, if expression 1 is
false, the program exits the while loop and executes statement group 2. The
following example illustrates the use of the while loop.

Example 3.3

Determine the number of consecutive integer numbers which when added to-
gether will give a value equal to or just less than 210.

Solution
MATLAB Script

diary ex3 3.dat
% integer summation
int=1; int_sum = 0;
max_val =210;
while int sum < max_val
int sum = int_sum + int;
int=int+ 1;
end
last_int = int
if int sum == max_val
num_int=int - 1
tt int ct= int sum
elseif int_sum > max_val
num_int=1int - 1
tt_int ct=int sum - last int
end
end
diary

The solution obtained will be

last_int=
21



© 1999 CRC PressLLC

num_int =
20

tt int ct=
210

Thus, the number of integers starting from 1 that would add up to 210 is 20.
That is,
1+2+3+4 +... +20 =210

34 INPUT/OUTPUT COMMANDS

MATLAB has commands for inputting information in the command window
and outputting data. Examples of input/output commands are echo, input,
pause, keyboard, break, error, display, format, and fprintf. Brief descriptions
of these commands are shown in Table 3.3.

Table 3.3
Some Input/output Commands

COMMAND | DESCRIPTION

break exits while or for loops

disp displays text or matrix

echo displays m-files during execution

error displays error messages

format switches output display to a particular
format

fprintf displays text and matrices and specifies
format for printing values

input allows user input

keyboard invokes the keyboard as an m-file

pause causes an m-file to stop executing. Press-
ing any key cause resumption of program
execution.

Break

The break command may be used to terminate the execution of for and while
loops. If the break command exits in an innermost part of a nested loop, the
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break command will exit from that loop only. The break command is useful in
exiting a loop when an error condition is detected.

Disp

The disp command displays a matrix without printing its name. It can also be
used to display a text string. The general form of the disp command is

disp(x)
disp(‘text string”)

disp(x) will display the matrix x. Another way of displaying matrix x is to type
its name. This is not always desirable since the display will start with a leading

113 ER)

x =7. Disp(‘text string’) will display the text string in quotes. For ex-
ample, the MATLAB statement

disp(‘3-by-3 identity matrix’)
will result in

3-by-3 identity matrix
and

disp(eye(3,3))

will result in

1 0 O
0 1 O
0 0 1

Echo

The echo command can be used for debugging purposes. The echo command
allows commands to be viewed as they execute. The echo can be enabled or
disabled.

echoon - enables the echoing of commands
echo off - disables the echoing of commands
echo - by itself toggles the echo state
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Error

The error command causes an error return from the m-files to the keyboard
and displays a user written message. The general form of the command is

error(‘message for display’)
Consider the following MATLAB statements:

x = input(‘Enter age of student’);
if x<0
error(‘wrong age was entered, try again’)
end
x = input(‘Enter age of student’)

For the above MATLAB statements, if the age is less that zero, the error mes-
sage ‘wrong age was entered, try again’ will be displayed and the user will
again be prompted for the correct age.

Format

The format controls the format of an output. Table 3.4 shows some formats
available in MATLAB.

Table 3.4
Format Displays
COMMAND MEANING
format short 5 significant decimal digits
format long 15 significant digits
format short e | scientific notation with 5 significant digits
format long e scientific notation with 15 significant digits
format hex hexadecimal
format + + printed if value is positive, - if negative; space is
skipped if value is zero

By default, MATLAB displays numbers in “short” format (5 significant dig-
its). Format compact suppresses line-feeds that appear between matrix dis-
plays, thus allowing more lines of information to be seen on the screen. For-
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mat loose reverts to the less compact display. Format compact and format
loose do not affect the numeric format.

[fprintf

The fprintf can be used to print both text and matrix values. The format for
printing the matrix can be specified, and line feed can also be specified. The
general form of this command is

fprintf(‘text with format specification’, matrices)
For example, the following statements

cap = 1.0e-06;
fprintf('The value of capacitance is %7.3e Farads\n', cap)

when executed will yield the output

The value of capacitance is 1.000e-006 Farads

The format specifier %7.3¢ is used to show where the matrix value should be
printed in the text. 7.3e indicates that the capacitance value should be printed
with an exponential notation of 7 digits, three of which should be decimal
digits. Other format specifiers are

%t -  floating point
%g-  signed decimal number in either %e or %f format,
whichever is shorter

The text with format specification should end with \n to indicate the end of
line. However, we can also use \n to get line feeds as represented by the fol-
lowing example:

rl =1500;
fprintf(‘resistance is \n%f Ohms \n', r1)

the output is

resistance is
1500.000000 Ohms
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Input
The input command displays a user-written text string on the screen, waits for
an input from the keyboard, and assigns the number entered on the keyboard as
the value of a variable. For example, if one types the command

r = input(‘Please enter the four resistor values’);
when the above command is executed, the text string ‘Please, enter the four
resistor values’ will be displayed on the terminal screen. The user can then
type an expression such as

[10 1530 25];

The variable r will be assigned a vector [10 15 30 25]. If the user strikes the
return key, without entering an input, an empty matrix will be assigned to r.

To return a string typed by a user as a text variable, the input command may
take the form

x = input(‘Enter string for prompt’, ’s’)
For example, the command

x = input(‘What is the title of your graph’, ’s’)
when executed, will echo on the screen, ‘What is the title of your graph.” The
user can enter a string such as ‘Voltage (mV) versus Current (mA).’
Keyboard
The keyboard command invokes the keyboard as an m-file. When the word
keyboard is placed in an m-file, execution of the m-file stops when the word
keyboard is encountered. MATLAB commands can then be entered. The
keyboard mode is terminated by typing the word, “return” and pressing the

return key. The keyboard command may be used to examine or change a vari-
able or may be used as a tool for debugging m-files.



Pause
The pause command stops the execution of m-files. The execution of the m-
file resumes upon pressing any key. The general forms of the pause command

arc

pause
pause(n)

Pause stops the execution of m-files until a key is pressed. Pause(n) stops the
execution of m-files for n seconds before continuing. The pause command can
be used to stop m-files temporarily when plotting commands are encountered
during program execution. If pause is not used, the graphics are momentarily
visible.
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EXERCISES

3.1 Write a MATLAB program to add all the even numbers from 0 to
100.

3.2 Add all the terms in the series

I 1 1
I+ +—+- 4.

until the sum exceeds 1.995. Print out the sum and the number of
terms needed to just exceed the sum of 1.995.
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3.3

34

3.5

3.6

The Fibonacci sequence is given as
11235813 2134 ..

Write a MATLAB program to generate the Fibonacci sequence up
to the twelfth term. Print out the results.

The table below shows the final course grade and its corresponding
relevant letter grade.

LETTER GRADE | FINAL COURSE GRADE
A 90 < grade < 100

B 80 < grade < 90

C 70 < grade < 80

D 60 < grade <70

F grade < 60

For the course grades: 70, 85, 90, 97, 50, 60, 71, 83, 91, 86, 77, 45,
67, 88, 64,79, 75,92, and 69

(a) Determine the number of students who attained the grade of A
and F.
(b) What are the mean grade and the standard deviation?

Write a script file to evaluate y[1], y[2], y[3] and y[4] for the
difference equation:

yln]=2yln —1] = yln =2] +x[n]

for n = 0. Assume that x[n] =1 for n = 0, y[-2] =2 and
M-1=1.

The equivalent impedance of a circuit is given as

: : 1
Z,,(jw) =100 + jwL +jW_C

IfL=4Hand C=1 pF,
(a) Plot |Z,, (jw)

(c) With what frequency does the minimum impedance occur?

versus w. (b) What is the minimum impedance?
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CHAPTER FOUR

DC ANALYSIS

4.1 NODAL ANALYSIS

Kirchhoff’s current law states that for any electrical circuit, the algebraic sum
of all the currents at any node in the circuit equals zero. In nodal analysis, if
there are n nodes in a circuit, and we select a reference node, the other nodes
can be numbered from V; through V,_ ;. With one node selected as the refer-
ence node, there will be n-1 independent equations. If we assume that the ad-

mittance between nodes i and j is given as Y, we can write the nodal equa-

[J >

tions:
Yo VitYoVatoo  +YVe= 1
Y21V1+Y22V2+... + ngVm: Z 12
Yo Vit Yoo Vot oo+ You Vi = z I,
4.1)
where
m=n-1

Vi, V, and V,, are voltages from nodes 1, 2 and so on ..., n with re-
spect to the reference node.

z I, is the algebraic sum of current sources at node x.

Equation (4.1) can be expressed in matrix form as

MUEY (4.2)

The solution of the above equation is

V=111 (4.3)

where
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[Y] ' is an inverse of [Y].
In MATLAB, we can compute [V] by using the command

V=inv(Y)*1 (4.4)
where

inv(Y) is the inverse of matrix ¥

The matrix left and right divisions can also be used to obtain the nodal volt-
ages. The following MATLAB commands can be used to find the matrix [V]

V= %, (4.5)
or
V=Y\I (4.6)

The solutions obtained from Equations (4.4) to (4.6) will be the same, pro-
vided the system is not ill-conditioned. The following two examples illustrate
the use of MATLAB for solving nodal voltages of electrical circuits.

Example 4.1

For the circuit shown below, find the nodal voltages V;, V, and V.

20 Ohms
NN
Vv 10 Ohms v, 40 Ohms |y
I —y AMA——3 3

5A CT) 50 Ohms CT) 2A

———A——

Figure 4.1 Circuit with Nodal Voltages



Solution

Using KCL and assuming that the currents leaving a node are positive, we

have
For node 1,
M=V V=V sy
10 20
1e.,
015V, - 0.1V, —=0.05V, =5 @.7)
At node 2,
V,=V +£+V2_V3 —
10 50 40
ie.,
0.1V, +0.145V, —0.025V; =0 (4.8)
At node 3,
I/S_Vvl +V;_V2_2:O
20 40
1e.,
~0.05V, —0.025V, +0.075V, =2 (4.9)

In matrix form, we have

0015 -01  —005I¥,0 50
0 0_ 30
001 0145 -00253%, 9= 0 (4.10)
5005 0025 0075 0.0 BB

The MATLAB program for solving the nodal voltages is
MATLAB Script

diary ex4 1.dat
% program computes the nodal voltages
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% given the admittance matrix Y and current vector I
% Y is the admittance matrix and I is the current vector
% initialize matrix y and vector I using YV=I form
Y=[0.15 -0.1 -0.05;

-0.1  0.145 -0.025;

-0.05 -0.025 0.075];
I=15;

0;

2];
% solve for the voltage
fprintf('Nodal voltages V1, V2 and V3 are \n')
v =1inv(Y)*I
diary

The results obtained from MATLAB are

Nodal voltages V1, V2 and V3,

v =
404.2857
350.0000
412.8571

Example 4.2:

Find the nodal voltages of the circuit shown below.

2 Ohms

vV 5 Ohms V2 V3 15 Ohms

10

20 Ohms 4 Ohms 10 Ohms C) 0V

Figure 4.2 Circuit with Dependent and Independent Sources
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Solution

Using KCL and the convention that currents leaving a node is positive, we
have

Atnode 1
£+V‘1_V2+I/1_V4_5:0
20 5 2
Simplifying, we get
0.75V, =02V, =05V, =5 @.11)
Atnode 2,
V,=-V, =101,
But
=V
I, = 1 . 4
Thus
1oV, =V,)
2 V3 = 12 :
Simplifying, we get
SV +V, =V, 45V, =0 (4.12)

From supernodes 2 and 3, we have

B hen n vn-v_,
10 5 4 15

Simplifying, we get

~02V, + 045V, +01667V, —0.06667V, =0 4.13)
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At node 4, we have

v, =10

In matrix form, equations (4.11) to (4.14) become

75 -02 0 -05 O¥,0 0500
0_ _ 0 0.0
o> 1 1 5 %ﬁngom
3-02 045 01667 -0.066670¥,0 D00
0 0 0.0
0o 0 0 1 %’45 %OD

The MATLAB program for solving the nodal voltages is

MATLAB Script

diary ex4 2.dat

% this program computes the nodal voltages

% given the admittance matrix Y and current vector |
% Y is the admittance matrix

% I is the current vector

% initialize the matrix y and vector I using YV=I

Y=[0.75 02 0 -0.5;
5 1-1 5
0.2 0.45 0.166666667 -0.0666666667;
0 00 1]

% current vector is entered as a transpose of row vector
I=[5 0 0 10]%

% solve for nodal voltage

fprintf('Nodal voltages V1,V2,V3,V4 are \n")
V =inv(Y)*1

diary

We obtain the following results.

Nodal voltages V1,V2,V3,V4 are

(4.14)

(4.15)
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V=
18.1107
17.9153

-22.6384
10.0000

4.2 LOOP ANALYSIS

Loop analysis is a method for obtaining loop currents. The technique uses Kir-
choff voltage law (KVL) to write a set of independent simultaneous equations.
The Kirchoff voltage law states that the algebraic sum of all the voltages
around any closed path in a circuit equals zero.

In loop analysis, we want to obtain current from a set of simultaneous equa-
tions. The latter equations are easily set up if the circuit can be drawn in pla-
nar fashion. This implies that a set of simultaneous equations can be obtained
if the circuit can be redrawn without crossovers.

For a planar circuit with n-meshes, the KVL can be used to write equations for
each mesh that does not contain a dependent or independent current source.
Using KVL and writing equations for each mesh, the resulting equations will
have the general form:

i+ Zy L+ Ziz13+ Zi,1,= Z Vi
Iy Lt Zyph+Zplz+ .. Zon 1= Z Vv,
Zal+ZoL+ Zoht oo Zul= YV,
(4.16)
where
1, I, ... I, are the unknown currents for meshes 1 through 7.
Zi1, Z33, ..., Zy, are the impedance for each mesh through which indi-

vidual current flows.

Z;, j #1i denote mutual impedance.

Z V. is the algebraic sum of the voltage sources in mesh x.



Equation (4.16) can be expressed in matrix form as

[Z] 4 =[] 4.17)
where

X, Z, Z; Z, B

%21 Zy, Zy Z,, i
Z= gm Zy, Zy Z3ng

D .o .e . .e D

@nl Zn2 Zn3 Znn E

~

I
WHORELTH
MmOOOOOO

and

SNON N
I o o |

SO

S

The solution to Equation (4.17) is

[11=[4711 (4.18)

In MATLAB, we can compute [I] by using the command

I =inv(Z)*V (4.19)
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where
inv(Z) is the inverse of the matrix Z

The matrix left and right divisions can also be used to obtain the loop currents.
Thus, the current I can be obtained by the MATLAB commands

I:KQ (4.20)

or

I1=7Z\V (4.21)

As mentioned earlier, Equations (4.19) to (4.21) will give the same results,
provided the circuit is not ill-conditioned. The following examples illustrate
the use of MATLAB for loop analysis.

Example 4.3

Use the mesh analysis to find the current flowing through the resistor R . In
addition, find the power supplied by the 10-volt voltage source.

10 Ohms 15 Ohms
RB 5 Ohms
Ct)“o v AN
SN
30 Ohms 30 Ohms

Figure 4.3a Bridge Circuit

© 1999 CRC PressLLC



© 1999 CRC PressLLC

Solution

Using loop analysis and designating the loop currents as /,,/,,/;, we obtain
the following figure.

I 10 Ohms I, 15 Ohms
ML AT &
Y

30 Ohms

30 Ohms

Figure 4.3b  Bridge Circuit with Loop Currents

Note that / = /; — I, and power supplied by the source is P =101,

The loop equations are

Loop 1,

10(1, = 1,) +30(1, = 1) =10 =0

401, - 101, =307, =10 (4.22)
Loop 2,

10(Z, —1,) +151, +5(1, —-1;) =0

~101, +301, =51, =0 (4.23)
Loop 3,

30(1, - 1,) +5(1, —1,) +30I, =0

~301, =51, +65I, =0 (4.24)
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In matrix form, Equations (4.22) and (4.23) become

040 -10 -30(0J,0 0100

210 30 =S %25:805 (4.25)
F30 -5 65Hd,H H0H

The MATLAB program for solving the loop currents /,,/,, 1, the current /
and the power supplied by the 10-volt source is

MATLAB Script

diary ex4 3.dat

% this program determines the current

% flowing in a resistor RB and power supplied by source
% it computes the loop currents given the impedance

% matrix Z and voltage vector V

% Z is the impedance matrix

% V is the voltage matrix

% initialize the matrix Z and vector V

Z=[40 -10 -30;
10 30 -5;
30 -5 65];

V=[10 0 0]}

% solve for the loop currents

I=1inv(Z)*V;

% current through RB is calculated

IRB =1(3) - I(2);

fprintf(‘the current through R is %8.3f Amps \n',IRB)

% the power supplied by source is calculated

PS =1(1)*10;

fprintf(‘the power supplied by 10V source is %8.4f watts \n',PS)
diary

MATLAB answers are

the current through Ris  0.037 Amps
the power supplied by 10V source is 4.7531 watts
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Circuits with dependent voltage sources can be analyzed in a manner similar to
that of example 4.3. Example 4.4 illustrates the use of KVL and MATLAB to
solve loop currents.

Example 4.4

Find the power dissipated by the 8 Ohm resistor and the current supplied by
the 10-volt source.

5V
6 ohms 15 Ohms /—\ 10 ohms

NV NV -+ NN
H U
|S

6 Ohms

10V
<t> 20 Ohms §
41
S

Figure 4.4a Circuit for Example 4.4

Solution

Using loop analysis and denoting the loop currents as /;,/, and /5, the cir-
cuit can be redrawn as

5V
6 Ohms 15 Ohms m 10 Ohms
-+
I
2 60

| N
1 |
3
hms
10V
<f> 20 Ohms 8 Ohms
4,

Figure 4.4b Figure 4.4 with Loop Currents
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By inspection,

For loop 1,
~10+61, +20(1, —1,) =0
261, =201, =10

For loop 2,

151, =5 +6(1, —1,) +4I, +20(1, —1,)

Using Equation (4.26), the above expression simplifies to

~161, +411, =6,1 =5
For loop 3,

101, +81, =41, +6(I, —1,) =

Using Equation (4.26), the above expression simplifies to

~41, - 61, +241, =0

Equations (4.25) to (4.27) can be expressed in matrix form as

026 -20 0,0 000
0 0 0.0
T16 41 —6%25255D

B4 -6 245H HH

The power dissipated by the 8 Ohm resistor is
P= R]32 = 8]32

The current supplied by the source is /g = 1,

(4.26)

4.27)

(4.28)

(4.29)

(4.30)
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A MATLAB program for obtaining the power dissipated by the 8 Ohm resistor
and the current supplied by the source is shown below

MATLAB Script

diary ex4 4.dat

% This program determines the power dissipated by
% 8 ohm resistor and current supplied by the

% 10V source

%

% the program computes the loop currents, given
% the impedance matrix Z and voltage vector V
%

% Z is the impedance matrix

% V is the voltage vector

% initialize the matrix Z and vector V of equation
% Z1=V

Z=[26 -20 O;
16 40 -6;
4 -6 24];

V=[10 5 O],

% solve for loop currents

[ =inv(Z)*V;

% the power dissipation in 8 ohm resistor is P

P =8*I(3)"2;

% print out the results

fprintf('Power dissipated in 8 ohm resistor is %8.2f Watts\n',P)
fprintf('Current in 10V source is %8.2f Amps\n',I(1))

diary

MATLAB results are

Power dissipated in 8 ohm resistor is  0.42 Watts
Current in 10V source is  0.72 Amps

For circuits that contain both current and voltage sources, irrespective of
whether they are dependent sources, both KVL and KVL can be used to obtain
equations that can be solved using MATLAB. Example 4.5 illustrates one
such circuit.
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Example 4.5

Find the nodal voltages in the circuit, i.e., V},V,, ..., Vs

101,
Vo
+ - .
V1 10 Ohms Vya
AN
Vp

5V

b T 2 Ohms <+> 24V

Figure 4.5 Circuit for Example 4.5

Solution
By inspection,
V,=V-v,
Using Ohm’s Law
I = Vi—V;
¢ 5
Using KCL at node 1, and supernode 1-2, we get

Vz_V3 —

5+u_5Vb +T 0

10

Using Equation (4.31), Equation (4.33) simplifies to

4.31)

(4.32)

(4.33)



— 44V, +0125V, —0125V, +49V, =0

Using KCL at node 4, we have

Vo=V Vo=V ViV, _
4 5 10
This simplifies to

10

— 0.1V, =02V, +0.557, 025V, =0
Using KCL at node 3, we get

V3_V4+V3_V2_
5 8

5=0

which simplifies to
~0.125V, +0325V, =02V, =5
Using KVL for loop 1, we have
~107, +V, +51, +8(I, +5) =0
Using Equations (4.31) and (4.32), Equation (4.37) becomes
~101, +V, +5I, +81, +40 =0
1.e.,
31, +V, = =40
Using Equation (4.32), the above expression simplifies to

3Ll oy =0
5

Simplifying the above expression, we get
V, =06V, —04V, = 40
By inspection

v, =24

© 1999 CRC PressLLC

(4.34)

(4.35)

(4.36)

4.37)

(4.38)

(4.39)
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Using Equations (4.34), (4.35), (4.36), (4.38) and (4.39), we get the matrix

equation

F44 0125 -0125 49 0 [¥,0 00 O
0 0 OO
Jor 02 0 oss -0250f,0 Bo B
00 -0125 0325 -02 0 ,0=050
Jr 0 06 -04 0 0400
0 : : .0 7400
Ho 0 0 0 1 H.H B4 H

(4.40)

The MATLAB program for obtaining the nodal voltages is shown below.

MATLAB Script

diary ex4 5.dat
% Program determines the nodal voltages

% given an admittance matrix Y and current vector I

% Initialize matrix Y and the current vector I of
% matrix equation Y V =1
Y =[-4.4 0.125 -0.125 4.9 0;
-0.1 0 -0.2 0.55 -0.25;
0 -0.125 0.325 -0.2 0;
1 0 -0.6 -04 0
00 0 o0 1]
I=[0 0 5 -40 247,
% Solve for the nodal voltages
fprintf('Nodal voltages V(1), V(2), .. V(5) are \n")
V = inv(Y)*I; diary

The results obtained from MATLAB are
Nodal voltages V(1), V(2), ... V(5) are

V=
117.4792
299.7708
193.9375
102.7917

24.0000



4.3 MAXIMUM POWER TRANSFER

Assume that we have a voltage source V' with resistance R connected to a

load R, . The circuit is shown in Figure 4.6.

R

Figure 4.6 Circuit for Obtaining Maximum Power Dissipation

The voltage across the Load R, is given as
VR,
R +R,

L

The power dissipated by the load Ry is given as

P :V_Lz_ VvszRL

=L 4.41
"R, (R +R) 4D

The value of R, that dissipates the maximum power is obtained by differenti-

ating P, with respectto R, , and equating the derivative to zero. That is,

dP, _(R +R)'Vy =V R, (2)(R +R,)
dR, (R +R,)*

dp,
dR,

(4.42)

© 1999 CRC PressLLC
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Simplifying the above we get

(R, +R,)~2R, =0
1.e.,

R, =R, (4.43)

Thus, for a resistive network, the maximum power is supplied to a load pro-
vided the load resistance is equal to the source resistance. When R, =0, the

voltage across and power dissipated by R, are zero. On the other hand, when

R, approaches infinity, the voltage across the load is maximum, but the

power dissipation is zero. MATLAB can be used to observe the voltage across
and power dissipation of the load as functions of load resistance value. Ex-
ample 4.6 shows the use of MATLAB to plot the voltage and display the
power dissipation of a resistive circuit.

Before presenting an example on the maximum power transfer theorem, let us
discuss the MATLAB functions diff and find.

4.3.1 MATLAB Diff and Find Functions

Numerical differentiation can be obtained using the backward difference ex-
pression

X )= X _
f,(x'1):f( n) f( I‘II) (4.44)
‘xn - xn—l
or by the forward difference expression
X - X
fr(xn): f( n+l) f( n) (445)
xn+1 - xn

The derivative of f(x) can be obtained by using the MATLAB diff function

f'(x) Odiff (f)./diff (x). (4.46)

If f isarow or column vector
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f=rm 1@ . fn)]

then diff(f) returns a vector of difference between adjacent elements

diff (/H)=[/2)-fQ) fB3)-f(2) ... f(n)=f(n-1]
(4.47)

The output vector diff ( /) will be one element less than the input vector f.

The find function determines the indices of the nonzero elements of a vector
or matrix. The statement

B = find( f) (4.48)

will return the indices of the vector f that are nonzero. For example, to ob-
tain the points where a change in sign occurs, the statement

Pt _change = find(product < 0) (4.49)

will show the indices of the locations in product that are negative.

The diff and find are used in the following example to find the value of resis-
tance at which the maximum power transfer occurs.

Example 4.6

In Figure 4.7, as R, varies from 0 to 50KQ, plot the power dissipated by the

load. Verify that the maximum power dissipation by the load occurs when R,
is 10 KQ.
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10,000 Ohms

AAAY

10V

P, §RL

Figure 4.7 Resistive Circuit for Example 4.6

MATLAB Script

% maximum power transfer

% vs is the supply voltage

% rs is the supply resistance

% rl is the load resistance

% vl is the voltage across the load

% pl is the power dissipated by the load
vs =10; r1s=10e3;

rl = 0:1e3:50e3;

k = length(rl); % components in vector rl
% Power dissipation calculation

for i=1:k
pl(D) = ((vs/(rs+rl(i)))"2)*rl(i);
end

% Derivative of power is calculated using backward difference

dp = diff(pl)./diff(r]);

rld = rl(2:length(rl)); % length of rld is 1 less than that of rl
% Determination of critical points of derivative of power

prod = dp(1:length(dp) - 1).*dp(2:length(dp));
crit_pt = rld(find(prod < 0));

max_power = max(pl); % maximum power is calculated

% print out results



fprintf('Maximum power occurs at %8.2f Ohms\n',crit_pt)
fprintf('Maximum power dissipation is %8.4f Watts\n', max_power)
% Plot power versus load

plot(rL,pl,'+")

title('Power delivered to load')

xlabel('load resistance in Ohms')

ylabel('power in watts')

The results obtained from MATLAB are

Maximum power occurs at 10000.00 Ohms
Maximum power dissipation is 0.0025 Watts

The plot of the power dissipation obtained from MATLAB is shown in Figure

4.8.
- w1’ Power delivered to load
. ++_|:r|—r+++++ T T T
+ +++++
al + ++++ |
++++
+ .
+++++
) ++++
2 |+ s
=
g
2 1 T
+
05F .
D 1 1 1 1
0 1 2 3 4 5
load resistance in Ohms « 10

Figure 4.8 Power delivered to load
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EXERCISES

4.1 Use loop analysis to write equations for the circuit shown in Figure
P4.1. Determine the current / using MATLAB.

6 Ohms
NV

4 Ohms § g 6 Ohms
2 Ohms
10V Cﬁ) AN\
| —

8 Ohms § § 15 Ohms

1

Figure P4.1 Circuit for Exercise 4.1
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4.2 Use nodal analysis to solve for the nodal voltages for the circuit
shown in Figure P4.2. Solve the equations using MATLAB.

\Y

AN

\L 3A % 5 Ohms é 6 Ohms

2 Ohms vV 3 Ohms
V1 3 V
AVAVAY, AVAVAY, 4
4 A 6 A
§ 4 Ohms CTD CTD
8 Ohms
AN Vs

Figure P4.2 Circuit for Exercise 4.2

4.3 Find the power dissipated by the 4Q resistor and the voltage V.
8A

@

2 Ohms l X

61
X

+ - +
U Vo> 4 0hms

v L3V
y 4 Ohms 2 Ohms y

Figure P4.3 Circuit for Exercise 4.3
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4.4 Using both loop and nodal analysis, find the power delivered by a
15V source.

2A

§ 4 Ohms 5 Ohms §

4V
8 Ohms
-+ AVAAY,
—>

00 /) . *
15V
- B 2Ohms§Va

Figure P4.4 Circuit for Exercise 4.4

4.5 As R, varies from 0 to 12 in increments of 2Q, calculate the power
dissipated by R,. Plot the power dissipation with respect to the
variation in R,. What is the maximum power dissipated by R, ?

What is the value of R, needed for maximum power dissipation?

3 Ohms 2 Ohms 3 Ohms
VN VN
12 Ohms
12v(
§ 6 Ohms § RL

36V

Figure P4.5 Circuit for Exercise 4.5
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4.6 Using loop analysis and MATLAB, find the loop currents. What
is the power supplied by the source?

AAAY

4 Ohms 3 Ohms
AVAVAY, NN
I Iy
§4 Ohms ;2 Ohms
2 Ohms 2 Ohms
NN NN
ev( *
C‘) ;2 Ohms
NN NN
3 Ohms 4 Ohms

Figure P4.6 Circuit for Exercise 4.6

(=)o

4 Ohms
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CHAPTER FIVE

TRANSIENT ANALYSIS

5.1 RC NETWORK

Considering the RC Network shown in Figure 5.1, we can use KCL to write
Equation (5.1).

= C V. (1)

Ayl

SR

Figure 5.1 Source-free RC Network

e, v, () _

5.1
dt R G

ie.,

dv, (1) , v.(D _
dt CR

If V, is the initial voltage across the capacitor, then the solution to Equation

(5.1)is
T

v, (t) = Vme_ (5.2)

where
CR is the time constant

Equation (5.2) represents the voltage across a discharging capacitor. To obtain
the voltage across a charging capacitor, let us consider Figure 5.2.
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Cﬁ) A —C V(t)

Figure 5.2 Charging of a Capacitor

Using KCL, we get

0, vV,

53
dt R G

If the capacitor is initially uncharged, thatis v,(¢) = 0at ¢ =0, the solution
to Equation (5.3) is given as

U B HO
v, (1) =V El —e %ﬁg (5.4)

Examples 5.1 and 5.2 illustrate the use of MATLAB for solving problems
related to RC Network.
Example 5.1

Assume that for Figure 5.2 C = 10 UF, use MATLAB to plot the voltage
across the capacitor if R is equal to (a) 1.0 kQ, (b) 10kQ and (c) 0.1 kQ.

Solution
MATLAB Script

% Charging of an RC circuit

%
¢ = 10e-6;
rl =1e3;
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Figure 5.

— —
o )

co

-9

Voltage across capacitor
[=7]

]

0 1 1 1 1 1
0 001 002 003 004 005 0086

taul = c¢*rl;

t=0:0.002:0.05;

vl = 10*(1-exp(-t/taul));
r2 = 10e3;

tau2 = ¢*r2;

v2 = 10*(1-exp(-t/tau2));
r3 =.1e3;

tau3 = c*r3;

v3 = 10*(1-exp(-t/tau3));

plot(t,vl,'+,t,v2,'0', t,v3,'*")

axis([0 0.06 0 12])

title('Charging of a capacitor with three time constants')
xlabel('Time, s')

ylabel('Voltage across capacitor’)

text(0.03, 5.0, '+ for R = 1 Kilohms')

text(0.03, 6.0, 'o for R = 10 Kilohms')

text(0.03, 7.0, "* for R = 0.1 Kilohms")

3 shows the charging curves.

Charging of a capacitor with three time constants

F FE KK AR E XK KKK 1
% SREPREEEORR X

+ * for R = 0.1 Kilohms
- o for R = 10 Kilohms
+ for R = 1 Kilohms

Time. s

Figure 5.3 Charging of Capacitor
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From Figure 5.3, it can be seen that as the time constant is small, it takes a
short time for the capacitor to charge up.

Example 5.2

For Figure 5.2, the input voltage is a rectangular pulse with an amplitude of 5V
and a width of 0.5s. If C = 10 pF, plot the output voltage, v,(¢), for

resistance R equal to (a) 1000 Q, and (b) 10,000 Q. The plots should start
from zero seconds and end at 1.5 seconds.

Solution
MATLAB Script

% The problem will be solved using a function program rceval
function [v, t] = rceval(r, ¢)
% rceval is a function program for calculating
% the output voltage given the values of
% resistance and capacitance.
% usage [v, t] = rceval(r, c)
% r is the resistance value(ohms)
% c is the capacitance value(Farads)
% v is the output voltage
% t is the time corresponding to voltage v
tau =r¥*c;
for i=1:50
t(i) = 1/100;
v(i) = 5*(1-exp(-t(i)/tau));
end
vmax = v(50);

fori=51:100

t(i) = i/100;

v(i) = vmax*exp(-t(i-50)/tau);
end
end

% The problem will be solved using function program
% rceval

% The output is obtained for the various resistances

¢ =10.0e-6;

rl =2500;



[v1,tl1] = rceval(rl,c);
r2 =10000;
[v2,t2] = rceval(r2,c);

% plot the voltages

plot(tl,v1l,"*w', t2,v2,'+w")

axis([0 1 0 6])

title('Response of an RC circuit to pulse input')
xlabel('Time, s')

ylabel('Voltage, V')

text(0.55,5.5," is for 2500 Ohms')
text(0.55,5.0, '+ is for 10000 Ohms')

Figure 5.4 shows the charging and discharging curves.

Response of an RC circuit to pulse input

6 T T T T
*is for 2500 Ohms
5 + is for 10000 Ohms
4 |
-
Iy +
_I_
e
2 5 -
_I_
*
1 * !
N ¥
0 . . %
0 0.2 04 0.6

Time. s

Figure 5.4 Charging and Discharging of a Capacitor with Different
Time Constants
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5.2 RL NETWORK

Consider the RL circuit shown in Figure 5.5.

Figure 5.5 Source-free RL Circuit

Using the KVL, we get

, dit)

+ Ri(t) =0 (5.5)

If the initial current flowing through the inductor is /, , then the solution to
Equation (5.5) is

i(t) = lme_%@ (5.6)

where
T= % (5.7)

Equation (5.6) represents the current response of a source-free RL circuit with
initial current /, , and it represents the natural response of an RL circuit.

Figure 5.6 is an RL circuit with source voltage v(¢) = V.
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Figure 5.6 RL Circuit with a Voltage Source

Using KVL, we get

, di(t)
t

+Ri(t) =V (5.8)

If the initial current flowing through the series circuit is zero, the solution of
Equation (5.8) is

:
i(t) = %El —e_ﬁ%ﬁé (5.9)
The voltage across the resistor is
v (t) = Ri(?)
_ ngl-eﬂ%é (5.10)
The voltage across the inductor is
V() =V =i (1)
_, HE
=V,e (5.11)

The following example illustrates the use of MATLAB for solving RL circuit
problems.
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Example 5.3

For the sequential circuit shown in Figure 5.7, the current flowing through the
inductor is zero. At ¢ = 0, the switch moved from position a to b, where it
remained for 1 s. After the 1 s delay, the switch moved from position b to
position ¢, where it remained indefinitely. Sketch the current flowing through
the inductor versus time.

50 Ohms 200 H
AN b ?L Y

C

40V 150 Ohms § 50 Ohms

Figure 5.7 RL Circuit for Example 5.3

Solution

For 0 <t< 1s, we can use Equation (5.9) to find the current

O 280

i(t) = 0.4@ e D”D% (5.12)
where

1= g =200 =25
At t=1s

i(1) = 04(1 - ™) (5.13)

= Imax
For > 1 s, we can use Equation (5.6) to obtain the current
005 E
i(ty=1I_e" " " (5.14)



where

_ L/ -200/ -
n=br =200 =1 s

The MATLAB program for plotting #(¢) is shown below.

MATLAB Script

% Solution to Example 5.3

% taul is time constant when switch is at b

% tau2 is the time constant when the switch is in position ¢
%

taul = 200/100;

for k=1:20

t(k) = k/20;

i(k) = 0.4*(1-exp(-t(k)/taul));
end

imax = i(20);
tau2 = 200/200;
fork=21:120
t(k) = k/20;
i(k) = imax*exp(-t(k-20)/tau2);
end

% plot the current

plot(t,i,'0")

axis([0 6 0 0.18])
title('Current of an RL circuit')
xlabel('Time, s')
ylabel('Current, A")

Figure 5.8 shows the current (7).

© 1999 CRC PressLLC
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Current of an RL circuit

0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

Current, A

Figure 5.8 Current Flowing through Inductor

53 RLC CIRCUIT

For the series RLC circuit shown in Figure 5.9, we can use KVL to obtain
the Equation (5.15).

V (t) =V, R V(1)

_.
—
~

Figure 5.9 Series RLC Circuit
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di(t)
dt

Differentiating the above expression, we get

1 .
ve(t) =L +E:[°z(r)dr + Ri(t) (5.15)

dv(t)  d%(t) _di(t) ir)
= + +
dt L dr? R dt C

ie.,

Ldvg(t) _d%i() L Rdi) i)
L dt  dt* L dt LC

(5.16)

The homogeneous solution can be found by making Vv (#) = constant, thus

o= i) | Rdi(t) | i(0)

(5.17)
> L dt LC
The characteristic equation is
0=A> +aA +b (5.18)

where

a:% and
b=Yic

The roots of the characteristic equation can be determined. If we assume that
the roots are

A=a,B
then, the solution to the homogeneous solution is
i,(t) = Ae™ + A,e™ (5.19)

where



© 1999 CRC PressLLC

A, and A, are constants.

If v (?) is a constant, then the forced solution will also be a constant and be

given as

i (1) = 4, (5.20)
The total solution is given as

i(1) = Ae™ + A,e™ + A, (5.21)
where

A,, A, and A, are obtained from initial conditions.

Example 5.4 illustrates the use of MATLAB for finding the roots of
characteristic equations. The MATLAB function roots, described in Section
6.3.1, is used to obtain the roots of characteristic equations.

Example 5.4

For the series RLC circuit shown in Figure 5.9, If L = 10 H, R = 400 Ohms

di(0)
t

and C=100uF, vs(¢) =0,7(0) =4 A and =15 Ass, find i(2).

Solution

Since V()= 0, we use Equation (5.17) to get

_ d’i(1) . 400 di(t)

0
dt* 10

+1000(¢)

The characteristic equation is

0=A> +40A +1000

The MATLAB function roots is used to obtain the roots of the characteristics
equation.
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MATLAB Script

p =140 1000];
lambda = roots(p)

lambda =
-20.0000 +24.49491
-20.0000 -24.4949i

Using the roots obtained from MATLAB, i(?) is given as
i(t) = ™" (A4, cos(24.4949¢) + A, sin(24.4949¢)

i(0)=e™(4 +4,(0) O 4 4

di(t
’d%) = 20" [ 4, cos(24.49491) + 4, sin(24.49491)]| +

e[~ 24.4949 4, 5in(24.49491) +24.4949 4, cos(24.49491)|

di(0)
——— =2449494, -204, =15

Since A, =4, A, = 38784

i(1) = e " [4.cos(24.4949¢) +3.8784sin(24.4949¢)]

Perhaps the simplest way to obtain voltages and currents in an RLC circuit is to
use Laplace transform. Table 5.1 shows Laplace transform pairs that are
useful for solving RLC circuit problems.

From the RLC circuit, we write differential equations by using network
analysis tools. The differential equations are converted into algebraic
equations using the Laplace transform. The unknown current or voltage is
then solved in the s-domain. By using an inverse Laplace transform, the
solution can be expressed in the time domain. We will illustrate this method
using Example 5.5



Table 5.1

Laplace Transform Pairs

f(t) f(s)
1
1 1 - >0
s
1
2 t — >0
s
n!
3 t" n+l s>0
s
—at 1
4 e s>a
sta
t —at 1
5 € s>a
(s+a)’
. w
6 sin(wt) - $>0
sTtw
S
7 cos(wr) - 5 s>0
sT+w
8 “ sin(wt) 2
e w —
(s+a)® +w’
at ( t) S + a
9 e” cos(w —
(s+a)® +w’
dar "
A sF(s)= f£(0
N (9= £(0")
!
11 If(l-)dr F(s)
0
s
12 ft=1) e F(s)
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Example 5.5

The switch in Figure 5.10 has been opened for a long time. If the switch opens
att=0, find the voltage v(¢). Assumethat R=10Q,L=1/32 H,

C=50puFand [ =2 A.

>$=

Figure 5.10 Circuit for Example 5.5

At t <0, the voltage across the capacitor is
ve(0) = (2)(10) =20 Vv

In addition, the current flowing through the inductor
i,(0)=0

At t> 0, the switch closes and all the four elements of Figure 5.10 remain in
parallel. Using KCL, we get

15=%+cdvm+ I WT)dr +i (0)

Taking the Laplace transform of the above expression, we get

BP9 v v o+ 4149
) sL S

Simplifying the above expression, we get
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4 ohms 2 ohms

L j L j é) .

2 Ohms 2 Ohms

‘”CIP ) j Lo j -

2 Shme o Shee

For [, =2A,C=50uF,R=10Q, L=1/32H, V(s) becomes

_ 40000 +20s
V(S) ) 4
s~ +2000s +64*10
V(s) = 40000 + 20s _ A + B

" (s+1600)(s +400) (s +1600) (s +400)

A= Lim V(s)(s+1600) = -6.67

s - —1600

B=[jm V(s)s+400) = 2667

s— —400

W(t) = =6.67e " +26.67¢ "

The plot of V() is shown in Figure 5.13.

5.4 STATE VARIABLE APPROACH

Another method of finding the transient response of an RLC circuit is the state
variable technique. = The later method (i) can be used to analyze and
synthesize control systems, (ii) can be applied to time-varying and nonlinear
systems, (iii) is suitable for digital and computer solution and (iv) can be used

to develop the general system characteristics.

A state of a system is a minimal set of variables chosen such that if their
values are known at the time 7, and all inputs are known for times greater

than f,, one can calculate the output of the system for times greater than 7,.
In general, if we designate X as the state variable, # as the input, and y as

the output of a system, we can express the input # and output ) as



(1) = Ax(t) + Bu(?) (522)

y(t) =Cx(t)+ Du(t) (5.23)
where

G, ()0 O, (1) 0 D ()0

A (0F F.(0 08
wty=0 . O xt)=0 . O y)=0 . O

0 0 0 O 0 O

0- 0 0 O 0 O

F, (OH B, (OB B.(O)8

and 4, B, C, and D are matrices determined by constants of a system.

For example, consider a single-input and a single-output system described by
the differential equation

d4 t d3 t d2 t d t

We define the components of the state vector as

x (1) = (1)
_dy(t) _ dx(1) _
(=20 =50 =)
_ &Py _de(t) _
x(n =0 =5 D=

x4(t) - d y(t) - dx}ft) )

ar a0
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d*y(t) _dx,(t) _

xS(t) = dt4

dt

_x4(t)

Using Equations (5.24) and (5.25), we get

x,() = 6u(t) = 3x, (1) —4x,(£) =8x,() =2x,(1)

From the Equations (5.25) and (5.26), we get

Eﬁ(z)ﬁ 00 1 0  O[Ix()
%2.(0%_%0 0 1 0L
GnD 200 0 1@
Sog B ot
or (1) = Ax(t) + Bu(r)
where
Fg 1o
)-C:%z(t)g Azgo 0 1
ol T 0 o
g0 00 7
Since
(t) = x,(2)

0 00

0 o0

O %)@(t)

0 oo

0 00

0 %D

00 00

0O 0
D’B — [0

107 O
O O

30 %D

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

we can express the output V(?) in terms of the state x(¢) and input u(¢) as

w(2)

where

= Cx(t) + Du(t)

(5.30)
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c=[1 0 0 0 ana D=[q] (5.31)

In RLC circuits, if the voltage across a capacitor and the current flowing in an
inductor are known at some initial time 7, then the capacitor voltage and
inductor current will allow the description of system behavior for all
subsequent times. This suggests the following guidelines for the selection of
acceptable state variables for RLC circuits:

1. Currents associated with inductors are state variables.
2. Voltages associated with capacitors are state variables.
3. Currents or voltages associated with resistors do not specify

independent state variables.
4. When closed loops of capacitors or junctions of inductors exist in a

circuit, the state variables chosen according to rules 1 and 2 are not
independent.

Consider the circuit shown in Figure 5.11.

R, R, Ry

+ YO -

N
< +
\|
A
o

+
N
hY
71
(@]
N

—

\AAAS
—

¢

Il

Figure 5.11 Circuit for State Analysis
Using the above guidelines, we select the state variables to be V,, V,,and i, .

Using nodal analysis, we have
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dvl(t)+1/1_l/s +V1_V2 -

C
bodt R, R,

0

c av,() V2=V,
Podt R,

+i =0
Using loop analysis

. di (£)
V,=iR +L——=
2 173 dt

The output y(?) is given as

y(1) = w (1) = v, ()

Simplifying Equations (5.32) to (5.34), we get

dvl(t):_( 1,1 - A
dt CR CR,”' CR, CR

dv,(t) _ "V, i
dt CR, GR, C,

1

dt L L

Expressing the equations in matrix form, we get

o 1 1 1 0
%}D TCcr "R’ Cr 0
0 0 114 114 1% ID
, 0= O 1 _ Ut o,
g/fm 0  GR, C,R, (U
0, 0 O | R.OHH
00 O 0 — -2
O L L

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)
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and the output is
0,0
y=[t -1 g (5:40)
==

MATLAB functions for solving ordinary differential equations are ODE
functions. These are described in the following section.

54.1 MATLAB Ode Functions

MATLAB has two functions, ode23 and ode45, for computing numerical
solutions to ordinary differential equations. The ode23 function integrates a
system of ordinary differential equations using second- and third-order Runge-
Kutta formulas; the ode45 function uses fourth- and fifth-order Runge-Kutta
integration equations.

The general forms of the ode functions are
[tx] = ode23 (xprime, tstart, tfinal, xo, tol,trace)
or
[tx] = ode45 (xprime, tstart, tfinal, xo, tol, trace)
where

xprime  is the name (in quotation marks) of the MATLAB function
or m-file that contains the differential equations to be integrated. The

function will compute the state derivative vector x(#) given the
current time ¢, and state vector X(#) . The function must have 2 input
arguments, scalar ¢ (time) and column vector X (state) and the

function returns the output argument xdot, (x), a column vector of
state derivatives

dx(t,)
dt

x(4) =
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tstart  is the starting time for the integration

tfinal  is the final time for the integration

X0 is a column vector of initial conditions

tol is optional. It specifies the desired accuracy of the solution.

Let us illustrate the use of MATLAB ode functions with the following two
examples.

Example 5.6

For Figure 5.2, VS =10V, R=10,000 Q, C=10pF. Find the output voltage

v, (), between the interval 0 to 20 ms, assuming V,(0) =0 and by (a)

using a numerical solution to the differential equation; and (b) analytical
solution.

Solution

From Equation (5.3), we have

c.O vV, _,

dt R
thus
dv() _ V, _v, (1) _ 100 —10v,(¢)
dt CR CR

From Equation(5.4), the analytical solution is
0 -FLH0
v (t) = 10% -e %QE

MATLAB Script
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% Solution for first order differential equation
% the function diff1(t,y) is created to evaluate
% the differential equation

% Its m-file is diffl.m

%

% Transient analysis of RC circuit using ode
% function and analytical solution

% numerical solution using ode

t0=0;

tf = 20e-3;

x0 = 0; % initial conditions

[t, vo] = ode23('diff1',t0,tf,x0);

% the analytical solution given by Equation(5.4) is
vo_analy = 10*(1-exp(-10*t));

% plot two solutions

subplot(121)

plot(t,vo,'b")

title('State Variable Approach’)

xlabel('Time, s'),ylabel('Capacitor Voltage, V'),grid
subplot(122)

plot(t,vo_analy,'b")

title('Analytical Approach')

xlabel('Time, s'),ylabel('Capacitor Voltage, V'),grid

%

function dy = diff1(t,y)
dy =100 - 10%*y;

end

Figure 5.12 shows the plot obtained using Equation (5.4) and that obtained
from the MATLAB ode23 function. From the two plots, we can see that the
two results are identical.
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State “ariable Approach Analytical Approach

2 , 2
1.8 1.8
15 1.6
- 1.4 - 1.4
EIJ- CD-
12 =12
= =
> o
£ £
208 208
oo jw
I [0
L} L]

=
[az]
=
[a7]

o
.

0.z

(@) (b)

Figure 5.12 Output Voltage v,(¢) Obtained from (a) State
Variable Approach and (b) Analytical Method

Example 5.7

For Figure 5.10, if R = 10Q, L =1/32 H, C = 50uF, use a numerical solution
of the differential equation to solve V(¢). Compare the numerical solution to

the analytical solution obtained from Example 5.5.

Solution

From Example 5.5, v.(0) =20V, i, (0) =0, and
di, (1)
L ;l‘ =ve(?)

dve (@ . v
C#+1L+ CR -1

=0



Simplifying, we get

di (t) _v(t)

dat L

dv.(t) I, i (1) v(b)
i ~C C RC

Assuming that

x, (1) =i, (0)
X, (1) =ve(2)

We get
. 1
X () = x,(1)

- I, 1 1
% (0 =5 =50 (D) =5 m ()

We create function m-file containing the above differential equations.
MATLAB Script

% Solution of second-order differential equation
% The function diff2(x,y) is created to evaluate the diff. equation
% the name of the m-file is diff2.m

% the function is defined as:

%

function xdot = diff2(t,x)

1s=2;

c¢c=150e-6; L=1/32; r=10;

kl=1/c; % 1/C

k2= 1/L; % l/L

k3 =1/(r*c); % 1/RC

xdot(1) = k2*x(2);

xdot(2) = k1*is - k1*x(1) - k3*x(2);
end
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To simulate the differential equation defined in diff2 in the interval 0 < t < 30
ms, we note that

(0)=i,(0)=0V

x,(0) =v.(0) =20

Using the MATLAB ode23 function, we get

% solution of second-order differential equation

% the function diff2(x,y) is created to evaluate

% the differential equation

% the name of m-file is diff2.m

%

% Transient analysis of RLC circuit using ode function
% numerical solution

t0 = 0;

tf = 30e-3;

x0 = [0 20]; % Initial conditions
[t,x] = ode23('diff2',t0,tf,x0);

% Second column of matrix x represent capacitor voltage
subplot(211), plot(t,x(:,2))

xlabel('Time, s'), ylabel('Capacitor voltage, V')

text(0.01, 7, 'State Variable Approach')

% Transient analysis of RLC circuit from Example 5.5
t2 =0:1e-3:30e-3;

vt = -6.667*exp(-1600*t2) + 26.667*exp(-400*t2);
subplot(212), plot(t2,vt)

xlabel('Time, s'), ylabel('Capacitor voltage, V")
text(0.01, 4.5, 'Results from Example 5.5")

The plot is shown in Figure 5.13.
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Results from Example 5.5
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o
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Time. s

o

Figure 5.13 Capacitor Voltage Vv,(#) Obtained from Both State
Variable Approach and Laplace Transform

The results from the state variable approach and those obtained from Example
5.5 are identical.

Example 5.8

For Figure 5.11, if vg(#) = 5u(t) where u(t) is the unit step function and
R =R, =R, =10KQ, C, =C,=5UF, and L =10 H, find and plot
the voltage v, () within the intervals of 0 to 5 s.

Solution

Using the element values and Equations (5.36) to (5.38), we have

—dg’ ) = —40,(1) +20v, (1) +207,



M = 20\}1(1‘) —20V2(f) _il(t)

diy(1)
dt

= 0.1v,(¢) —1000i ()

We create an m-file containing the above differential equations.
MATLAB Script

%

% solution of a set of first order differential equations
% the function diff3(t,v) is created to evaluate

% the differential equation

% the name of the m-file is diff3.m

%

function vdot = diff3(t,v)
vdot(1) = -40*v(1) + 20*v(2) + 20*5;
vdot(2) = 20*v(1) - 20*v(2) - v(3);

vdot(3) = 0.1*v(2) -1000*v(3);
end

To obtain the output voltage in the interval of 0 <t < 5s, we note that the
output voltage

Vo () = v, (1) =, (2)
Note that at t <0, the step signal is zero so
vo(0) =v,(0) =,(0) =0

Using ode45 we get

% solution of a set of first-order differential equations
% the function diff3(t,v) is created to evaluate

% the differential equation

% the name of the m-file is diff3.m

%

% Transient analysis of RLC circuit using state

© 1999 CRC PressLLC
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% variable approach

t0=0;
tf=2;
x0 = [0 0 0]; % initial conditions

[t,x] = ode23('diff3', 0, tf, x0);
tt = length(t);
fori=I:tt
vo(i) = x(i,1) - x(1,2);
end
plot(t, vo)

title('Transient analysis of RLC")
xlabel('Time, s'), ylabel('Output voltage")

The plot of the output voltage is shown in Figure 5.14.

Dutput voltage

nsf

Transient analysis of RLC

D L L L
1] 0.4 1 1.4

Time, s

Figure 5.14 Output Voltage ¢ | -
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EXERCISES

5.1 If the switch is opened at # = 0, find v,(¢). Plotv,(f) between the

time interval 0 <t <5s.

20 kilohms 10 kilohms
PN AN
t=0
§ 1 microfarads T V(1)

Figure PS.1 Figure for Exercise 5.1



5.2 The switch is close at t = 0; find #(¢) between the intervals 0 to 10
ms. The resistance values are in ohms.

(1) Ss e Jan

Figure PS5.2 Figure for Exercise 5.2

5.3 For the series RLC circuit, the switch is closed at t = 0. The initial
energy in the storage elements is zero. Use MATLAB to find v, (7).

10 Ohms 1.25H
3: AN Y
t=0

8v Ct) 0.25 microfarads —~ V. (t)

Figure P5.3 Circuit for Exercise 5.3

5.4 Use MATLAB to solve the following differential equation

3 2
ddy;gt) +7 ddytgﬂ +14 dyd(t’) +12)(1) =10
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with initial conditions

2
GO _, O
dt dt

»(0) =1,

Plot y(t) within the intervals of 0 and 10 s.

5.5 For Figure P5.5, if Vg =5u(t), determine the voltages Vi(t), Va(t),

Vi(t) and V4(t) between the intervals of 0 to 20 s. Assume that the initial
voltage across each capacitor is zero.

1kilohms ~ V, 1 kilohms v, 1 kilohms 1 kilohms v,

e

|
I

Vs 1pF 2pF 3pF
Figure P5.5 RC Network
5.6 For the differential equation

CHD 5D 4 6300) = 3sin(1) +7cos(r)

with initial conditions )(0) =4 and 0 =-1
t

(a) Determine (%) using Laplace transforms.
(b) Use MATLAB to determine )(?).
(c) Sketch y(t) obtained in parts (a) and (b).

(d) Compare the results obtained in part c.
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CHAPTER SIX

AC ANALYSIS AND NETWORK FUNCTIONS

This chapter discusses sinusoidal steady state power calculations. Numerical
integration is used to obtain the rms value, average power and quadrature
power. Three-phase circuits are analyzed by converting the circuits into the
frequency domain and by using the Kirchoff voltage and current laws. The un-
known voltages and currents are solved using matrix techniques.

Given a network function or transfer function, MATLAB has functions that can
be used to (i) obtain the poles and zeros, (ii) perform partial fraction expan-
sion, and (iii) evaluate the transfer function at specific frequencies. Further-
more, the frequency response of networks can be obtained using a MATLAB
function. These features of MATLAB are applied in this chapter.

6.1 STEADY STATE AC POWER

Figure 6.1 shows an impedance with voltage across it given by v(¢) and cur-
rent through it (7).

+
Figure 6.1 One-Port Network with Impedance Z

The instantaneous power p(t) is

p() =v()i(?) (6.1)

If v(¢) and i(¢) are periodic with period 7', the rms or effective values of
the voltage and current are



I/rms = (62)
I, = (6.3)
where
o is the rms value of V()
I . isthe rms value of i(¢)
The average power dissipated by the one-port network is
17
=—[v(t)i(t)dt 6.4
T{ (D)) (6.4)
The power factor, pf , is given as
P
pf = (6.5)
V.1

rms = rms

For the special case, where both the current i(¢#) and voltage v(Z) are both
sinusoidal, that is,

v(t) =V, cos(wt +6,) (6.6)
and

i(t) =1, cos(wt +6,) (6.7)
the rms value of the voltage V(1) is

v o= Yo (6.8)

rms \/5

and that of the current is
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1

m

IrmS N
V2
The average power P is

pP=v I  cos(6, —6)

rms = rms

The power factor, pf, is
pf =cos(6, -6,)
The reactive power Q is
o=Vv,J,,sin@, -6)
and the complex power, S, is

§=P+jQ

S=v 1 [cos(@V—el) +jsin(8, _61)]

rms-= rms

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

Equations (6.2) to (6.4) involve the use of integration in the determination of
the rms value and the average power. MATLAB has two functions, quad and

quad8, for performing numerical function integration.

6.1.1 MATLAB Functions quad and quad8

The quad function uses an adaptive, recursive Simpson’s rule. The quad8
function uses an adaptive, recursive Newton Cutes 8 panel rule. The quad8
function is better than the quad at handling functions with “soft” singularities

such as I\/;dx . Suppose we want to find ¢ given as

q= I funct(x)dx

The general forms of quad and quad8 functions that can be used to find ¢ are
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quad (' funct', a, b, tol, trace)

quad8(' funct', a, b, tol, trace)

where
funct

tol

trace

is a MATLAB function name (in quotes) that returns a
vector of values of f'(x) for a given vector of input values
X.

is the lower limit of integration.

is the upper limit of integration.

is the tolerance limit set for stopping the iteration of the
numerical integration. The iteration continues until the rela-
tive error is less than tol. The default value is 1.0e-3.

allows the plot of a graph showing the process of the

numerical integration. If the trace is nonzero, a graph is
plotted. The default value is zero.

Example 6.1 shows the use of the quad function to perform alternating current
power calculations.

Example 6.1

For Figure 6.1, if v(¢) = 10cos(12077 +30°) and

i(t) = 6¢c0s(12077 +60°) . Determine the average power, rms value of

v(t) and the power factor using (a) analytical solution and (b) numerical so-

lution.

Solution

MATLAB Script

diary ex6 1.dat

% This program computes the average power, rms value and
% power factor using quad function. The analytical and

% numerical results are compared.

% numerical calculations
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T = 2*pi/(120*pi); % period of the sin wave
a = 0; % lower limit of integration

b =T; % upper limit of integration
x=0:0.02:1;

t=x.*b;

v_int = quad('voltagel', a, b);

v_rms = sqrt(v_int/b); % rms of voltage
i_int = quad('currentl',a,b);

i rms = sqrt(i_int/b); % rms of current

p_int = quad('inst pr', a, b);

p_ave =p_int/b; % average power
pf=p_ave/(i_rms*v_rms); % power factor

%

% analytical solution

%

p_ave an = (60/2)*cos(30*pi/180); % average power
v_rms_an = 10.0/sqrt(2);

pf_an = cos(30*pi/180);

% results are printed

fprintf('Average power, analytical %f \n Average power, numerical:
%f\n', p_ave an,p ave)

fprintf('rms voltage, analytical: %f \n rms voltage, numerical: %f \n',
V_Ims_an, v_rms)

fprintf('power factor, analytical: %f \n power factor, numerical: %f \n',
pf_an, pf)

diary

The following functions are used in the above m-file:

function vsq = voltage1(t)
% voltagel This function is used to

% define the voltage function
vsq = (10*cos(120*pi*t + 60*pi/180)).72;
end

function isq = current1(t)

% currentl This function is to define the current
%

isq = (6*cos(120*pi*t + 30.0*pi/180))."2;

end
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function pt = inst_pr(t)

% inst_pr This function is used to define

% instantaneous power obtained by multiplying
% sinusoidal voltage and current

it = 6*cos(120*pi*t + 30.0*pi/180);

vt = 10*cos(120*pi*t + 60*pi/180);

pt = it.*vt;

end

The results obtained are

Average power, analytical 25.980762
Average power, numerical: 25.980762
rms voltage, analytical: 7.071068

rms voltage, numerical: 7.071076
power factor, analytical: 0.866025
power factor, numerical: 0.866023

From the results, it can be seen that the two techniques give almost the same
answers.

6.2 SINGLE- AND THREE-PHASE AC CIRCUITS

Voltages and currents of a network can be obtained in the time domain. This
normally involves solving differential equations. By transforming the differen-
tial equations into algebraic equations using phasors or complex frequency
representation, the analysis can be simplified. For a voltage given by

v(t) =V, e” cos(wt +0)

v(t) = Re[V, e cos(wt +6)| (6.15)
the phasor is

V=v,"=v,08 (6.16)

and the complex frequency S is
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s=0 +jw (6.17)

When the voltage is purely sinusoidal, that is

v,(t) =V, ,cos(wt +6,) (6.18)
then the phasor
V, = szej92 =V,,06, (6.19)

and complex frequency is purely imaginary, that is,
s = jw (6.20)

To analyze circuits with sinusoidal excitations, we convert the circuits into
the s-domain with s = jw. Network analysis laws, theorems, and rules are

used to solve for unknown currents and voltages in the frequency domain. The
solution is then converted into the time domain using inverse phasor transfor-
mation. For example, Figure 6.2 shows an RLC circuit in both the time and
frequency domains.

R, L, L,

+

@ V(t) = 8 cos (10t + 15%) V R, R, V,(t)

|||—

(a)
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1/G10C,)

IC
1\

R, j10L, v, 10L,

Y Y\ 22"

L
(b)
Figure 6.2 RLC Circuit with Sinusoidal Excitation (a) Time

Domain (b) Frequency Domain Equivalent

If the values of R, R,, R;, L,, L, and C, are known, the voltage V; can

be obtained using circuit analysis tools. Suppose V is
v, =v .06,

then the time domain voltage V5 (?) is
vy(t) =V, ,cos(wt +6,)

The following two examples illustrate the use of MATLAB for solving one-
phase circuits.

Example 6.2

In Figure 6.2,if R, =20Q, R, =100Q, R, =50Q.,and L, =4H, L, =
8 Hand C, =250uF, find v5(¢) when w =10 radss.

Solution
Using nodal analysis, we obtain the following equations.

Atnode 1,



V=V, ViV, V=V,

- TR =0 (6.21)
0 Hioc)
At node 2,
V-V, V, V,-V.
A LS T L (6.22)
j10L, R, j10L,
At node 3,
bl Vioh o (6.23)

; 1
R, JjI0L, %jloq)

Substituting the element values in the above three equations and simplifying,
we get the matrix equation

[0.05 - j0.0225 j0.025 - j0.0025 0,0 [©4015°0
O . : . 0_0 0
0 /0025 001-;0.0375 00125 =0 O [
H -0.0025 700125 002-,001FH,H H o H

The above matrix can be written as

(I =[1.
We can compute the vector [v] using the MATLAB command
V=in(Y)*1I

where
inv(Y) is the inverse of the matrix [Y ] )

A MATLAB program for solving V5 is as follows:

MATLAB Script

diary ex6_2.dat
% This program computes the nodal voltage v3 of circuit Figure 6.2
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% Y is the admittance matrix; % I is the current matrix
% V is the voltage vector

Y =[0.05-0.0225%j 0.025%  -0.0025%;
0.025%  0.01-0.0375% 0.0125%;
-0.0025%  0.0125%  0.02-0.01%];

cl = 0.4*exp(pi*15*j/180);
I=[cl
0
0]; % current vector entered as column vector
V =inv(Y)*I; % solve for nodal voltages
v3_abs =abs(V(3));
v3_ang = angle(V(3))*180/pi;
fprintf(‘voltage V3, magnitude: %f \n voltage V3, angle in degree:
%f', v3_abs, v3_ang)
diary

The following results are obtained:

voltage V3, magnitude: 1.850409
voltage V3, angle in degree: -72.453299

From the MATLARB results, the time domain voltage v;(?) is

vy(f) = 185cos(10¢ —72.45%) v

Example 6.3

For the circuit shown in Figure 6.3, find the current i,(¢) and the voltage
ve(?).
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4 Ohms 400 microfarads mH 10 Ohms

100 microfarads

Wﬁ_/\/\/\/—
—
i(t)
. +
@ 5 cos (10%t) V 6 Ohms @ 2 cos (103t + 75°) V
V(1) T

Figure 6.3 Circuit with Two Sources

Solution

Figure 6.3 is transformed into the frequency domain. The resulting circuit is
shown in Figure 6.4. The impedances are in ohms.

i8 10

/WY‘\_/\/\/\/—
5 1,
G| o

Figure 6.4 Frequency Domain Equivalent of Figure 6.3

Using loop analysis, we have
—-500% (4 j235)I+ (6+ j5 jl0)U,— 1,)= 0 (6.24)
10+ j8)1, +2075% (6+ j5 jl0)(I,— 1,)= 0 (6.25)

Simplifying, we have
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(10— j7.5)1, —(6 —j5)1, =500°
—(6- 51, +(16 +;3)I, = 2 075"
In matrix form, we obtain

00-,75 —6+,500,0_0500° O
H6+j5 16+ 30,0 geo7sH

The above matrix equation can be rewritten as

(1 =[] .

We obtain the current vector [I ] using the MATLAB command
1=inV(Z)*V

where inv(Z) is the inverse of the matrix [Z] :

The voltage V. can be obtained as
Vc = (_jlo)(ll _12)

A MATLAB program for determining /, and V, is as follows:

a

MATLAB Script

diary ex6 3.dat

% This programs calculates the phasor current 11 and
% phasor voltage Va.

% Z is impedance matrix

% V is voltage vector

% 1 is current vector

Z=[10-7.5% -6+5%;
6+5% 16+3%];

b = -2*exp(j*pi*75/180);
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V=[5
b]; % voltage vector in column form

I =inv(Z)*V; % solve for loop currents
il =1(1);
i2=1(2);

Ve =-10%*(11 - i2);

il _abs = abs(I(1));

il _ang = angle(I(1))*180/pi;
Vc_abs = abs(Vc);

Vc_ang = angle(Vc)*180/pi;

%results are printed

fprintf('‘phasor current i1, magnitude: %f \n phasor current i1, angle in
degree: %f\n', i1 _abs,il _ang)

fprintf(‘phasor voltage Ve, magnitude: %f \n phasor voltage Vc, angle
in degree: %f \n',Vc_abs,Vc_ang)

diary

The following results were obtained:

phasor current i1, magnitude: 0.387710

phasor current i1, angle in degree: 15.019255
phasor voltage Vc, magnitude: 4.218263
phasor voltage Vc, angle in degree: -40.861691

The current #,(¢) is

i,(t) =0.388cos(10°r +15.02°) A
and the voltage V. (?) is

v (t) =421cos(10°t =4086") v

Power utility companies use three-phase circuits for the generation, transmis-
sion and distribution of large blocks of electrical power. The basic structure of
a three-phase system consists of a three-phase voltage source connected to a
three-phase load through transformers and transmission lines. The three-phase
voltage source can be wye- or delta-connected. Also the three-phase load can
be delta- or wye-connected. Figure 6.5 shows a 3-phase system with wye-
connected source and wye-connected load.
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Van ™
FAE I
\/ L
Vbn 4 T2
() ]
\_/ L
Vcn z T3 z
- @ + Y1
z 4 z Y3 z Y2
[
L

Figure 6.5 3-phase System, Wye-connected Source and Wye-
connected Load

V., Zy
2O
Vbn th 22
Z 2
VCH Zt3 B
_ Q 4
N

Figure 6.6 3-phase System, Wye-connected Source and Delta-
connected Load

For a balanced abc system, the voltages V,,, V), , V., have the same magni-

tude and they are out of phase by 120°. Specifically, for a balanced abc sys-
tem, we have

v =v,00°

v, =V,03- 120° (6.26)
V. =v,0120°
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For cba system

v, =Vv,00°

v, =V,0120° (6.27)
v, =V, 120°

The wye-connected load is balanced if

Zy =2y =2y (6.28)
Similarly, the delta-connected load is balanced if

Iy =Zpy =2y (6.29)

We have a balanced three-phase system of Equations (6.26) to (6.29) that are
satisfied with the additional condition

L, =2, =27, (6.30)
Analysis of balanced three-phase systems can easily be done by converting the
three-phase system into an equivalent one-phase system and performing simple
hand calculations. The method of symmetrical components can be used to ana-
lyze unbalanced three-phase systems. Another method that can be used to ana-
lyze three-phase systems is to use KVL and KCL. The unknown voltage or

currents are solved using MATLAB. This is illustrated by the following ex-
ample.

Example 6.4

In Figure 6.7, showing an unbalanced wye-wye system, find the phase volt-
ages V Vg and V.

Solution

Using KVL, we can solve for /,, /,, I, . From the figure, we have

11000% (¥ jDIF (5+ j12)1, (6.31)
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1100 120%= (F j2)I,+ (3+ j4)l,

1100120% (F jOS)Iz+ (5 j12)1,

110/0°V 1 +j1 Ohms 5 +j12 Ohms

>

(6.32)

(6.33)

.

110/-120°V 1-j2 Ohms 3 +j4 Ohms

&)

-

110/120°V 1-j0.5 Ohms 5-j12 Ohms
+

@ c
N

Figure 6.7 Unbalanced Three-phase System

Simplifying Equations (6.31), (6.32) and (6.33), we have
11000% (6 Jj13)],
1100+ 120°= (4 j2)1,
1100120% (6 j125),

and expressing the above three equations in matrix form, we have

b6+,/13 0 0 J,0 O 11000°

Eo 4+ ;2 0 %25:510& 120"

U
U

H o 0 6-j125H,H Hi1o0120° H

The above matrix can be written as

[Z] 1] =[V]

(6.34)

(6.35)

(6.36)
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We obtain the vector [I ] using the MATLAB command

I =inv(Z)*V

The phase voltages can be obtained as
Vv =G+ j12)1,
Vey =3+ j4)1,

Vey = (= j12)(13)
The MATLAB program for obtaining the phase voltages is
MATLAB Script

diary ex6_4.dat
% This program calculates the phasor voltage of an
% unbalanced three-phase system
% Z is impedance matrix
% V is voltage vector and
% 1 is current vector
Z=[6-13% 0 O

0 4+2% 0

0 0 6-12.5%];
c2 = 110*exp(*pi*(-120/180));
c3 = 110*exp(j*pi*(120/180));

V =[110; c2; c3]; % column voltage vector
I =1nv(Z)*V; % solve for loop currents
% calculate the phase voltages

%

Van = (5+12%)*I(1);

Vbn = (3+4%))*1(2);

Ven = (5-12%)*1(3);

Van_abs = abs(Van);

Van_ang = angle(Van)*180/pi;
Vbn_abs = abs(Vbn);

Vbn_ang = angle(Vbn)*180/pi;
Vcen_abs = abs(Vcen);

Ven_ang = angle(Ven)*180/pi;

% print out results
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fprintf(‘phasor voltage Van,magnitude: %f \n phasor voltage Van, an-
gle in degree: %f \n', Van_abs, Van_ang)

fprintf(‘phasor voltage Vbn,magnitude: %f \n phasor voltage Vbn, an-
gle in degree: %f \n', Vbn_abs, Vbn_ang)

fprintf('phasor voltage Vcen,magnitude: %f \n phasor voltage Ven, an-
gle in degree: %f \n', Ven_abs, Ven_ang)

diary

The following results were obtained:

phasor voltage Van,magnitude: 99.875532
phasor voltage Van, angle in degree: 132.604994
phasor voltage Vbn,magnitude: 122.983739
phasor voltage Vbn, angle in degree: -93.434949
phasor voltage Ven,magnitude: 103.134238
phasor voltage Vcn, angle in degree: 116.978859

6.3 NETWORK CHARACTERISTICS

Figure 6.8 shows a linear network with input x(¢) and output y(¢). Its
complex frequency representation is also shown.

x(t)

X(s)et >

linear

A 4

>
network y(®

(@)

linear

network Y(s)e®

(b)

Figure 6.8 Linear Network Representation (a) Time Domain
(b) s- domain

In general, the input x(¢#) and output )(¢) are related by the differential

equation
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n n-l1
LAy, d7y

dy(t
n dtn n-1 dtn_l +"'+a1 J;(t) +a0y(t) =

m m-1
bm d X(t) +bm—l d x—(lt) +'”b1 dX(t) +b0.X([)
ar" dat" dt
(6.37)
where a,,a,_,...,ay,b,,b,_,... b, are real constants.

If x(t) = X(s)e", then the output must have the form y(z) = Y(s)e",
where X (s)and Y(s) are phasor representations of x(¢) and y(¢). From
equation (6.37), we have

(a,s" +a, s"" +- +as +a,)Y(s)e" =
(b,s" +b, s"" +-- +bs +b) X(s)e"
(6.38)
and the network function

Y(s bs"+b s"" +--bs+bh
— “m m-1 1 0
X(s as'"+a _s" +--as+a
n n-1 1 0

H(s) = (6.39)

The network function can be rewritten in factored form

H(s) = k(s=z)(s—2z,)(s-z,)

(6.40)
(s=p)s=p,)(s—p,)

where
k is a constant
Zy,Zy, ..., Z,, are zeros of the network function.

P> Pys -5 P, are poles of the network function.
The network function can also be expanded using partial fractions as

n 7 7
H(s)=——+——+ .. +—"—+k(s) (641
S—pr STD, s—p

n
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6.3.1 MATLAB functions roots, residue and polyval

MATLAB has the function roots that can be used to obtain the poles and zeros
of a network function. The MATLAB function residue can be used for partial
fraction expansion. Furthermore, the MATLAB function polyval can be used

to evaluate the network function.

The MATLAB function roots determines the roots of a polynomial. The gen-

eral form of the roots function is

r = roots(p)

where
p 1s a vector containing the coefficients of the polynomial in
descending order
r is a column vector containing the roots of the polynomials

For example, given the polynomial
f(x)=x +9x> +23x +15
the commands to compute and print out the roots of f(x) are

p =[19 23 15]
r =roots (p)

and the values printed are

r =
-1.0000
-3.0000
-5.0000

(6.42)

Given the roots of a polynomial, we can obtain the coefficients of the polyno-

mial by using the MATLAB function poly
Thus

S =poly ([-1 -3 -51")

(6.43)
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will give a row vector s given as
g =
1.0000 9.0000 23.0000 15.0000

The coefficients of S are the same as those of p.

The MATLAB function polyval is used for polynomial evaluation. The gen-
eral form of polyval is

pobval(p, x) (6.44)
where

p is a vector whose elements are the coefficients of a polynomial in
descending powers

polyval(p, x) is the value of the polynomial evaluated at x
For example, to evaluate the polynomial

f(x)=x" =3x" —4x +15
atx =2, we use the command

p=[l-3 -4 15];
polyval(p, 2)

Then we get

ans =
3

The MATLAB function residue can be used to perform partial fraction expan-
sion. Assuming FH(s) is the network function, since H(s) may represent

an improper fraction, we may express /(s) as a mixed fraction
B(s)
A(s)

H(s) = (6.45)
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< N(s)
H(s)=) k,s" +—— (6.46)
Zo D(s)
where
N
t
D(s) is a proper fraction
From equations (6.41) and ( 6.46), we get
n n & -
H(s) = + + L+ +> k,s"(647)
S™Ph STh ST™Py a3

Given the coefficients of the numerator and denominator polynomials, the
MATLAB residue function provides the values of 7, 7, ...... Pu's D1 D2 +e-Pns
and kj, k,, ...k, . The general form of the residue function is

[7, p, k] = residue(num, den) (6.48)

where

num is a row vector whose entries are the coefficients of the
numerator polynomial in descending order

den is a row vector whose entries are the coefficient of the
denominator polynomial in descending order

r is returned as a column vector
p (pole locations) is returned as a column vector
k (direct term) is returned as a row vector

The command

[num, den] = residue(r, p, k) (6.49)



Converts the partial fraction expansion back to the polynomial ratio

B(s)
A(s)

H(s) =

For example, given

45* +35° + 65> +10s +20

H =
() st 425 +55% +25 +8

(6.50)

for the above network function, the following commands will perform partial
fraction expansion

num = [4 3 6 10 20];
den=[12528];
[r, p, k] = residue(num, den) (6.51)

and we shall get the following results

r=
-1.6970 + 3.0171i
-1.6970 - 3.0171i
-0.8030 - 0.99061
-0.8030 + 0.9906i

p=
-1.2629 + 1.7284i
-1.2629 - 1.7284i
0.2629 + 1.2949i
0.2629 - 1.2949i

k=
4

The following two examples show how to use MATLAB function roots to
find poles and zeros of circuits.

Example 6.5
V,(5)

For the circuit shown below, (a) Find the network function H(s) = v (s)
N
s
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(b) Find the poles and zeros of H(s) , and
(©)if vg(¢) =10e™ cos(2t +40°), find v, (¢).

3H 6 Ohms

/YY)

+

V (t
2 Ohms %4H o

Figure 6.9 Circuit for Example 6.5

Solution

In the s-domain, the above figure becomes

@

Figure 6.10 S-domain Equivalent Circuit of Figure 6.9

Vols) _ Vo) Vi(s) _ 4 [2[(6+49)]
Vs(s)  Vie(s) Vs(s) ~ (6+45) [(2(6+45)) +3s]

Simplifying, we get

Vo(s) 45% + 65
Vo(s) 6s° +255> +30s +9

(6.52)



The phasor voltage V; =100040° ; s = -3+ ;2
Vy(s) = (10040%) H(s)| =34

(b, ¢) MATLAB is used to find the poles, zeros and v, (7).

MATLAB Script

diary ex6_5.dat

% Program for poles and zeros

num=[4 6 0];

den=[6 25 30 9];

disp('the zeros are')

z = roots(num)

disp('the poles are")

p = roots(den)

% program to evaluate transfer function and
% find the output voltage

sl =-3+2%;

nl = polyval(num,s1);

d1 = polyval(den,s1);

vo = 10.0%exp(j*pi*(40/180))*nl/d1;

vo_abs = abs(vo);

vo_ang = angle(vo)*180/pi;

% print magnitude and phase of output voltage
fprintf(‘phasor voltage vo, magnitude: %f \n phasor voltage vo, angle
in degrees: %f', vo_abs, vo_ang)

diary

MATLARB results are

Zeros
7=
0
-1.5000
Poles
p=
-2.2153
-1.5000
-0.4514

phasor voltage vo, magnitude: 3.453492
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phasor voltage vo, angle in degrees: -66.990823

From the results, the output voltage is given as

v(t) = 345¢™ cos(2t —66.99")

Example 6.6

Find the inverse Laplace transform of

G(s) = 105> +20s +40
VTS 1257 +475 +60

Solution
MATLAB Script

diary ex6_6.dat

% MATLAB is used to do the partial fraction expansion
%

num = [10 20 40];

den=[1 1247 60];

% we get the following results
[r, p, k] = residue(num,den)
diary

MATLAB results are

r =
95.0000
-120.0000
35.0000

-5.0000
-4.0000
-3.0000
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[l

From the results, we get

95 _ 120 N 35
s+5 s+4 s+3

G(s) =

and the inverse Laplace transform is

g(t) =35¢™ —120e™ +95¢~ (6.53)

6.4 FREQUENCY RESPONSE

The general form of a transfer function of an analog circuit is given in Equa-
tion (6.39). It is repeated here.

_Y(s) _bs"+b, s"" +---bs +b,
X(s) as"+a, s"

H(s)

+...a1S +a0

More specifically, for a second-order analog filter, the following transfer func-
tions can be obtained:

(i) Lowpass
H _# 6.54
LP(S)_S2+BS+W02 (6.54)
(1) Highpass
H o 6
HP(S) - Sz + Bs +W§ (6.55)
(ii1) Bandpass
kys
Hy, (s) = (6.56)

s>+ Bs+w,
(iv) Bandreject



k,s® +k, 657

H, (s)=
BR s>+ Bs+w,
where

ks ky,ky, k,, B and w, are constants

Figure 6.11 shows the circuit diagram of some filter sections.

C
|
1
R R
—VWWV A%
+ V0
VS
—~ C
(a)
R
NV
C C
—¢ 1€ *
+ —
v -

(b)
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(@)

an)

R3
R1 C
€ .
+ ———
+
V
S
\%
R2 0

(c)

Figure 6.11 Active Filters (a) Lowpass, (b) Highpass and
(c ) Bandpass

Frequency response is the response of a network to sinusoidal input signal. If
we substitute § = jw in the general network function, H(s), we get

H(s)| =, = M(W)OO(w) (6.58)
where

M(w) = |[H(jw) (6.59)
and

6(w) = DH(jw) (6.60)

The plot of M (w) versus w is the magnitude characteristics or response. Also,
the plot of B(W) versus @ is the phase response. The magnitude and phase

characteristics can be obtained using MATLAB function freqs.
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6.4.1 MATLAB function freqs

MATLAB function freqs is used to obtain the frequency response of transfer
function H(s). The general form of the frequency function is

hs = freqs(num, den, range) (6.61)
where
m + m-1 +... +
H(s) = Y(s) _b,s" +b,,s _ bs +b, 6.62)
X(s) a,s"+a,_s" +---as +a,
num={b, b.,., ... b, by] (6.63)
den = [an a,, ... a ao] (6.64)

range is range of frequencies for case

hs is the frequency response (in complex number form)

Suppose we want to graph the frequency response of the transfer function
given as

2s* +4

H(s)=——"—"—
(5) s* +4s5+16

(6.65)

We can use the following commands to find the magnitude characteristics

num = [2 0 4];
den=11416];

w = logspace(-2, 4);

h = freqs(num, den, w);
f=w/(2*pi);

mag = 20*log10(abs(h));
semilogx(f, mag)
title('Magnitude Response')
xlabel('Frequency, Hz')
ylabel('Gain, dB')
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The frequency response is shown in Figure 6.12.

Magnitude Respanse
10 y T . T . T

Gain, dB

A0k i

25 L
10 10

10° 10
Fregquency, Hz

Figure 6.12 Magnitude Response of Equation (6.65)

The following example shows how to obtain and plot the frequency response
of an RLC circuit.

Example 6.7

For the RLC circuit shown in Figure 6.13, (a) show that the transfer function is

R
V,(5) L
H(s) = = 21 (6.66)
Vi(s) PRI
L LC

(b) If L=5H, C =1.12 yF, and R = 10000 Q, plot the frequency re-
sponse.

(c) What happens when R =700 Q but L and C remain unchanged?



,_
(@)

™

@ v, R V()

Figure 6.13 RLC Circuit
Solution

(a) In the frequency domain,

s) = = = .
V.(s) R+sL+L s’LC+5sCR +1
S
which is
R
H(s) Vo(s) Sf
s) = =
Ve ., R, T
L LC

Parts (b) and (¢ ) are solved using MATLAB.

MATLAB Script

% Frequency response of RLC filter
%

1=15;

c=1.25e-6;

r1 =10000;

r2 =100;

numl = [r1/10];
denl =[1rl/1 1/(1*c)];

w = logspace(1,4);
h1 = freqs(numl,denl,w);
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f=w/(2*pi);
magl = abs(hl);
phasel = angle(h1)*180/pi;

num?2 = [r2/1 0];

den2 =[1 r2/1 1/(I*c)];

h2 = freqs(num2,den2,w);
mag?2 = abs(h2);

phase2 = angle(h2)*180/pi;

% Plot the response

subplot(221), loglog(f, magl,'.")
title('magnitude response R=10K")
ylabel('magnitude’)

subplot(222), loglog(f,mag2,".")
title('magnitude response R=.1K")
ylabel('magnitude’)

subplot(223), semilogx(f, phasel,".")
title('phase response R=10K"),...
xlabel('Frequency, Hz'), ylabel('angle in degrees')

subplot(224), semilogx(f, phase2,'.")
title('phase response R=.1K"),...
xlabel('Frequency, Hz'), ylabel('angle in degrees')

The plots are shown in Figure 6.14. As the resistance is decreased from
10,000 to 100 Ohms, the bandwidth of the frequency response decreases and
the quality factor of the circuit increases.
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magnitude

angle in degrees

magnitude response R=10K magnitude response R= 1K

il 0
10 = N 10
210"
=
=
= -2
£ 10 .
10’ 10°LE
10° 107 10° 10° 10° 10°
phase response R=10K phase respanse R=1K
100 100 o=
T w -
. T
., ]
- =
0 ﬁ.\"\-.\_ _2 0
. . i
LY fa]
.. S
-100 : -100 e a—
10° 10° 10° 10° 10° 10°
Frequency, Hz Frequency, Hz

Figure 6.14 Frequency Response of an RLC Circuit
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EXERCISES

If v(t) is periodic with one period of V(?) given as
v(t)=16(1-e) VvV 0<t<2s

(a) Use MATLAB to find the rms value of v(¢)
(b) Obtain the rms value of V() using analytical technique.

Compare your result with that obtained in part (a).
(c) Find the power dissipated in the 4-ohm resistor when the
voltage V() is applied across the 4-ohm resistor.

Ct> v(t) 4 Ohms ;R

Figure P6.1 Resistive Circuit for part (c)

A balanced Y-Y positive sequence system has phase voltage of the
source V= 120000°  rms if the load impedance per phase is

(I1+ j4.5) Q and the transmission line has an impedance per phase
of (1+05) 2

(a) Use analytical techniques to find the magnitude of the line
current, and the power delivered to the load.

(b) Use MATLAB to solve for the line current and the power
delivered to the load.



(c) Compare the results of parts (a) and (b).

6.3 For the unbalanced 3-phase system shown in Figure P6.3, find the
currents /,,/,,/;and hence /,,. Assume that Z, =10+ j5Q,

Z,=15+;7Q and Z. =12~ j3Q.

120 /0°V rms

®+wa i\

|3
g
120L1200 V rms

\r\y 2 Ohms [] %

120L120° V rms
1 Ohm C

Figure P6.3 Unbalanced Three-phase System

6.4 For the system with network function

s +4s* +16s +4
st +20s° +125° +5 +10

H(s) =

find the poles and zeros of H(s).

6.5 Use MATLAB to determine the roots of the following polynomials.
Plot the polynomial over the appropriate interval to verify the roots
location.

@ fi(x)=x>+4x +3

(b) f,(x) =x> +5x° +9x +5
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6.6

6.7

6.8

© fi(x) =2x° —4x* —12x° +27x* +8x -16

; V,(s) _ 20s
V.(s) 155> +23s+16°
find v, () given that v,(¢) = 2.3~ cos(5¢ +30°).

For the circuit of Figure P6.7

V,(s)

Vi(s)

(b)  If v,(¢£) =10e™ cos(t +10°), find v, (z).

(a) Find the transfer function

2 Ohms 2H
—ANN——F——Y N

+ +
V(t) - O05F ;4 Ohms V (t)

Figure P6.7 RLC Circuit

For Figure P6.8,

V,(s)

Vi(s)

(b) Use MATLAB to plot the magnitude characteristics.

(a) Find the transfer function H(s) =



AVAYAY;
20 kilohms

[(
AN
10 microfarads

20 kilohms
—\AWV I§ -
+ 100 microfarads —
. +
20
V(1)

Figure P6.8 Simple Active Filter
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CHAPTER SEVEN
TWO-PORT NETWORKS
This chapter discusses the application of MATLAB for analysis of two-port
networks. The describing equations for the various two-port network represen-
tations are given. The use of MATLAB for solving problems involving paral-

lel, series and cascaded two-port networks is shown. Example problems in-
volving both passive and active circuits will be solved using MATLAB.

7.1 TWO-PORT NETWORK REPRESENTATIONS
A general two-port network is shown in Figure 7.1.

» <
> <

1

+ +
Linear
V, two-port Vv,
network

Figure 7.1 General Two-Port Network

I, and V| are input current and voltage, respectively. Also, /, and V, are

output current and voltage, respectively. It is assumed that the linear two-port
circuit contains no independent sources of energy and that the circuit is initially
at rest ( no stored energy). Furthermore, any controlled sources within the lin-
ear two-port circuit cannot depend on variables that are outside the circuit.

7.1.1  z-parameters

A two-port network can be described by z-parameters as
Vi=2z,1, +z,1, (7.1
V,=z,1, +z,1, (7.2)

In matrix form, the above equation can be rewritten as



0 &, z,00,0

=0 H (7.3)
%/2 O Ba 2» %2 U
The z-parameter can be found as follows
_n
n = Z 1,=0 (7.4)
d (7.5)
Z, =—|, . .
12 I, 5,=0
e (7.6)
Zy, =— .
21 1, 1,=0
& (7.7)
Zyy =, - .
2 I, 1,=0

The z-parameters are also called open-circuit impedance parameters since they
are obtained as a ratio of voltage and current and the parameters are obtained

by open-circuiting port 2 (1, =0) or portl ([, =0). The following exam-
ple shows a technique for finding the z-parameters of a simple circuit.

Example 7.1

For the T-network shown in Figure 7.2, find the z-parameters.

Figure 7.2 T-Network
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Solution
Using KVL
Vi=Z1,+Z,(, +1,) =(Z, +Z,)I, +Z,1, (7.8)
V,=2,1, +Z,(I, +1,) =(Z;)I, +(Z, +Z;)I, (7.9)
thus

0,0 X +Z, Z, [M, 0 .10
=0 [l .
E/zD 0 4 Z,+Z, %2D

and the z-parameters are

[Z] [k * 2 4 L (7.11)
=0 [l .
0 4, Z,+7Z,0

7.1.2  y-parameters

A two-port network can also be represented using y-parameters. The describ-
ing equations are

I =y VW +yub, (7.12)

L, =y, Wy +y,V, (7.13)

where

V| and V, are independent variables and

I, and I, are dependent variables.

In matrix form, the above equations can be rewritten as

U1B_ D ylzmm% (7.14)
gzﬂ 521 Yo 2 [0 '

The y-parameters can be found as follows:

© 1999 CRC PressLLC
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Vi =71 Vom0 (7.15)
_ 1

Vi _V_2 =0 (7.16)
_1

Yo = 71 V,=0 (7.17)
_1

AL (7.18)

The y-parameters are also called short-circuit admittance parameters. They are
obtained as a ratio of current and voltage and the parameters are found by

short-circuiting port 2 (¥, =0) or port 1 (¥, =0). The following two exam-
ples show how to obtain the y-parameters of simple circuits.

Example 7.2
Find the y-parameters of the pi (T7) network shown in Figure 7.3.

Yy

l,—> — 1

+ +

1

Figure 7.3 Pi-Network
Solution

Using KCL, we have

1, =VY, +(V, -V)Y, =V (¥, +Y) 15}, (7.19)
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12 =V2Yc +(V2 _Vl)Yb = _VIYb +V2(Yb +Yc) (7.20)

Comparing Equations (7.19) and (7.20) to Equations (7.12) and (7.13), the y-
parameters are

DA A A
B v v +vH (7.21)

Example 7.3

Figure 7.4 shows the simplified model of a field effect transistor. Find its y-
parameters.

|14> D I2
|

+

<
!

el

e

IV Y, \Y

Figure 7.4 Simplified Model of a Field Effect Transistor

Using KCL,
1, =VsC +V, =V,)sC; =V,(sC, +sC,) +V,( =C;) (7.22)

I, =Wy, +g .V, +(V, =V))sC; =V,(g, —sC;) +V,(Y, +sC;)
(7.23)

Comparing the above two equations to Equations (7.12) and (7.13), the y-
parameters are



$C, +sC;, —sC;, O

7.24
Egm—sc3 Y2+SC3E 729

[¥] =
7.1.3  h-parameters

A two-port network can be represented using the h-parameters. The describing
equations for the h-parameters are

V,=h,I, +h,V, (7.25)
I, =hy,I, +h,V, (7.26)

where
I, and V, are independent variables and

V| and I, are dependent variables.

In matrix form, the above two equations become

0 h, h, 0O
2 [ 21 2» 112 [

The h-parameters can be found as follows:

hy, _?_1 7,20 (7.28)
hy, % 10 (7.29)
h,, ‘% v, =0 (7.30)
hy, _Ilf_z 120 (7.31)
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The h-parameters are also called hybrid parameters since they contain both
open-circuit parameters (/;, = 0 ) and short-circuit parameters (¥, =0). The
h-parameters of a bipolar junction transistor are determined in the following

example.
Example 7.4

A simplified equivalent circuit of a bipolar junction transistor is shown in Fig-
ure 7.5, find its h-parameters.

Z,
l, — —,
+ +
V, L) sl Y, v,
Figure 7.5 Simplified Equivalent Circuit of a Bipolar Junction
Transistor
Solution
Using KCL for port 1,
V., =172, (7.32)
Using KCL at port 2, we get
1, =0l +Y,V, (7.33)

Comparing the above two equations to Equations (7.25) and (7.26) we get the
h-parameters.

0

(7.34)
)7 D ' *
2 |:|

mﬁ'
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7.1.4  Transmission parameters

A two-port network can be described by transmission parameters.

scribing equations are
Vi=a,V, —a,l,
Iy =a,V, —ay,l,

where
V, and I, are independent variables and

V, and I, are dependent variables.

In matrix form, the above two equations can be rewritten as

0 @, a,00V,

% al %21 azz%lzﬂ

The transmission parameters can be found as

4
a, = -
1" I,=0
£
V
A, =~/ |, =
12 Vy=0
I 2
2
1,
a = 1,=0
=
v,
I,
Ay = T n=0
2

The de-

(7.35)

(7.36)

(7.37)

(7.38)

(7.39)

(7.40)

(7.41)

The transmission parameters express the primary (sending end) variables V),

and I, in terms of the secondary (receiving end) variables V, and -/,. The

negative of /, is used to allow the current to enter the load at the receiving

end. Examples 7.5 and 7.6 show some techniques for obtaining the transmis-

sion parameters of impedance and admittance networks.



Example 7.5

Find the transmission parameters of Figure 7.6.

1

Figure 7.6 Simple Impedance Network

Solution

By inspection,

1, =-1, (7.42)
Using KVL,
V.=V, +Z1, (7.43)

Since I, = —1,, Equation (7.43) becomes

V.=V, —-Z71, (7.44)
Comparing Equations (7.42) and (7.44) to Equations (7.35) and (7.36), we
have

a;, =1 a, =7, (7.45)

a, =0 a,, =1 '
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Example 7.6

Find the transmission parameters for the network shown in Figure 7.7.

l, — «— |,
* +
v, Y, v,
Figure 7.7 Simple Admittance Network
Solution
By inspection,
v, =V, (7.46)
Using KCL, we have
1, =VY -1, (7.47)

Comparing Equations (7.46) and 7.47) to equations (7.35) and (7.36) we have

a,;, =1 a, =0 .45
a, =%, a, =1 .

Using the describing equations, the equivalent circuits of the various two-port
network representations can be drawn. These are shown in Figure 7.8.

Z, Zy

121 2171

(a)
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1 «—
’ | | .
Vi Y.V, J, Y2V, J, Yo Vs Y, V, v,
(b)
h,
l, — b
+ ‘ +
Vv, \L hwz V2 \L h21 |1 h22 Vz
(c)

Figure 7.8 Equivalent Circuit of Two-port Networks (a) z-
parameters, (b) y-parameters and (c ) h-parameters

7.2 INTERCONNECTION OF TWO-PORT NETWORKS

Two-port networks can be connected in series, parallel or cascade. Figure 7.9
shows the various two-port interconnections.

* Vi (21, Ve

i 21, VY

(a) Series-connected Two-port Network



v, Iv1, Va

Y1,

(b) Parallel-connected Two-port Network

, —» L — l, —»
+ + +
v, 1A, V, [Al, v,

(c) Cascade Connection of Two-port Network
Figure 7.9 Interconnection of Two-port Networks (a) Series

(b) Parallel (c) Cascade

It can be shown that if two-port networks with z-parameters
[Z] 1 ,[ j 2[ Z 3s I Z , are connected in series, then the equivalent two-

port z-parameters are given as

(2., =14, 44,47, +.k7, (7.49)

If two-port networks with y-parameters [Y ] | ,[ ﬂ 2,[ )1 15 ,[ )]7 , are con-

nected in parallel, then the equivalent two-port y-parameters are given as

M, =0, 40, 4%, +.kY, (7.50)

When several two-port networks are connected in cascade, and the individual
networks have transmission parameters [A] I ,[ A] 2[ /j 15 I /1 . » then the

equivalent two-port parameter will have a transmission parameter given as

(4], =[4,14,14,*.F4, (7.51)
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The following three examples illustrate the use of MATLAB for determining
the equivalent parameters of interconnected two-port networks.

Example 7.7
Find the equivalent y-parameters for the bridge T-network shown in Figure
7.10.
24
" | B :
+ \—1 \—1 +
V1 23 V2
1
Figure 7.10 Bridge-T Network

Solution

The bridge-T network can be redrawn as

[\

Figure 7.11 An Alternative Representation of Bridge-T Network
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From Example 7.1, the z-parameters of network N2 are

Z +Z, Z, 0O
=07 2+zf
L 43 2 3

We can convert the z-parameters to y-parameters [refs. 4 and 6] and we get

— ZZ + Z3
y” B ZIZZ +Z|Z3 +ZZZ3
—_ Z3
Yo T 77 +2.2
142 143 243
(7.52)
_ B Z3
y21 ZIZZ +ZIZ3 +ZZZ3
7 +7,
Yo =

) ZIZZ + ZIZS + ZZZ3

From Example 7.5, the transmission parameters of network N1 are
a; =1 a, =2,

a, =0 a,, =1

We convert the transmission parameters to y-parameters| refs. 4 and 6] and we
get

: 1
Y _Z_4
1
Yo ="
2 (7.53)
| .
y T — e—
21 Z4
1
Yo = Z_4



Using Equation (7.50), the equivalent y-parameters of the bridge-T network

are
1 Z +Z
Vieg =7 F
" 7, 2Z,+7,Z, +Z,Z,
__ 1 Zy
Yo =T T 7 v 2.7, 47,7,
7.54
e A (7.54)
Yo =T T 7+ 2.7, + 2,2,
1 Z+Z,
Voeg =7 F
7, 22,+2.7,+7Z,Z,
Example 7.8

Find the transmission parameters of Figure 7.12.

Z,

Figure 7.12 Simple Cascaded Network
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Solution

Figure 7.12 can be redrawn as

Figure 7.13 Cascade of Two Networks N1 and N2

From Example 7.5, the transmission parameters of network N1 are

a, =1 a, =7,

a,, =0 a,, =1
From Example 7.6, the transmission parameters of network N2 are

a,;, =1 a, =0

a, =1, a, =1
From Equation (7.51), the transmission parameters of Figure 7.13 are

&, @,0 _0 Z1 00 O+Z)Y, Z0O (7.5%)
O = =0 O :
%’21 anl], %) 1 %/2 g oup 10
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Example 7.9

Find the transmission parameters for the cascaded system shown in Figure
7.14. The resistance values are in Ohms.

I, —» 2 4 8

+

\Z

| | | | |
| | | | |
| | | | |
| | | | |
1 1 1 1 1
| 1 | 2 | 4 | 8 |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |

N1 N2 N3 N4

Figure 7.14 Cascaded Resistive Network

Solution

Figure 7.14 can be considered as four networks, N1, N2, N3, and N4 con-
nected in cascade. From Example 7.8, the transmission parameters of Figure

7.12 are
[d] 0D 20
Ia=H 1
03 40
[a]NZ :H)S IH
[ ] _D3 80
v = Hos 1
03 1607

Ll e = H125 1H

The transmission parameters of Figure 7.14 can be obtained using the follow-
ing MATLAB program.
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MATLAB Script

diary ex7 9.dat
% Transmission parameters of cascaded network

al=[32;11];
a2=[34;0.51];

a3 =[38;0.251];
a4 =[316;0.125 1];

% equivalent transmission parameters
a=al*(a2*(a3*a4))
diary
The value of matrix a is
q=

112.2500 630.0000
39.3750 221.0000

7.3 TERMINATED TWO-PORT NETWORKS

In normal applications, two-port networks are usually terminated. A termi-
nated two-port network is shown in Figure 7.4.

9
I1 « IZ
L, +
+
Y <9 Vi v 4

Figure 7.15 Terminated Two-Port Network

In the Figure 7.15, Vg and Z g are the source generator voltage and imped-

ance, respectively. Z, is the load impedance. If we use z-parameter repre-

sentation for the two-port network, the voltage transfer function can be shown
to be
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E 202,
V

= (7.56)
e (z1) +Zg)(zzz +Z,) —z,2y
and the input impedance,
Z,Z
Z, =z~ (7.57)
ZpntZ,
and the current transfer function,
I, 2y
— == 7.58
I zptZ, 739

A terminated two-port network, represented using the y-parameters, is shown
in Figure 7.16.

h, —
[ +
+ +
[ -

Figure 7.16 A Terminated Two-Port Network with y-parameters
Representation

It can be shown that the input admittance, Y, , is

V2o
2T E— (7.59)
Vy tY,
and the current transfer function is given as
1 V5,7,
t= . (7.60)

I, - i T Y )y 1) — vy



and the voltage transfer function

E ___ Ya
Vg yntY,

(7.61)

A doubly terminated two-port network, represented by transmission parame-
ters, is shown in Figure 7.17.

zin
ZQ
L, ) I,
L—» +
+
(Al
Vg @ \/1 VZ ZL

Figure 7.17 A Terminated Two-Port Network with Transmission
Parameters Representation

rameters can be obtained as follows.

The voltage transfer function and the input impedance of the transmission pa-
have

From the transmission parameters, we

Vi=aV, —a,l,

(7.62)
I, =a,V, —a,l, (7.63)
From Figure 7.6,
V,=-1,Z,

(7.64)
Substituting Equation (7.64) into Equations (7.62) and (7.63), we get the input
impedance,

_ anZ, *a, (7.65)
"ayZ, tay
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From Figure 7.17, we have
Vi=V,-1,Z, (7.66)

Substituting Equations (7.64) and (7.66) into Equations (7.62) and (7.63), we
have

a
V,~-1,Z, =V,la, +%] (7.67)

L
axn
I, =V,la, +-7] (7.68)
Z,
Substituting Equation (7.68) into Equation (7.67), we get
V. ~V,Z [ay + 2] =V, [a,, +22
. V22 lay, 7 1=Vlay, 7 ] (7.69)
L

L

Simplifying Equation (7.69), we get the voltage transfer function

£ Z,
“2 = (7.70)
Vg (ay +a212g)ZL ta, +a222g

The following examples illustrate the use of MATLAB for solving terminated
two-port network problems.

Example 7.10

Assuming that the operational amplifier of Figure 7.18 is ideal,

(a) Find the z-parameters of Figure 7.18.

(b) If the network is connected by a voltage source with source
resistance of 50Q and a load resistance of 1 KQ, find the voltage
gain.

(c) Use MATLAB to plot the magnitude response.
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10 kilohms

Iy 2 kilohms

B 2kilohms ~ «— |,
R, 1 kilohms
* R, +
+ R,

J; VZ
v, C = 0.1 microfarads I é
Figure 7.18 An Active Lowpass Filter
Solution
Using KVL,
V= R, + 1
= — 7.7
1 oo (7.71)
V,=R,1, +R,, +R,I, (7.72)
From the concept of virtual circuit discussed in Chapter 11,
R, = 7.73
2 =0 (7.73)
Substituting Equation (7.73) into Equation (7.72), we get
2 sCR, 442 .

Comparing Equations (7.71) and (7.74) to Equations (7.1) and (7.2), we have
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z;, = R +E
Zy =
0 R (1.75)
2 =] R CQ
2
Zy =R,

From Equation (7.56), we get the voltage gain for a terminated two-port net-
work. It is repeated here.

E — 224,
v, (zy +Zg)(222 +Z,) 2,2,

Substituting Equation (7.75) into Equation (7.56), we have

(1+ &)Z
R, L

|

V = (R, +Z)[1+sC(R, +Z,)] (7.76)

g

For Z,=50Q, 7, =1KQ, R, =10KQ, R, =1KQ,R, =2 KQ
and C = 0.1 UF, Equation (7.76) becomes

S

2
= -4
v, [1+105%107s]

(7.77)

The MATLAB script is

%

num = [2];

den=[1.05¢-4 1];

w = logspace(1,5);

h = fregs(num,den,w);

f=w/(2*pi);

mag = 20*log10(abs(h)); % magnitude in dB
semilogx(f,mag)

title('Lowpass Filter Response')
xlabel('Frequency, Hz')
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ylabel('Gain in dB')

The frequency response is shown in Figure 7.19.

3

Gain in dB

1ok J

-15 :

Lowpass Filter Response
1D T T T T

10° 10 10* 10°
Frequency, Hz

10 10

Figure 7.19 Magnitude Response of an Active Lowpass Filter
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EXERCISES

7.1 (a) Find the transmission parameters of the circuit shown in Figure
P7.1a. The resistance values are in ohms.

1 2
—AAA AAN—

Figure P7.1a Resistive T-Network

(b) From the result of part (a), use MATLAB to find the transmission
parameters of Figure P7.2b. The resistance values are in ohms.

32

Figure P7.1b Cascaded Resistive Network

7.2 Find the y-parameters of the circuit shown in Figure P7.2
The resistance values are in ohms.
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20

l, 2 2 «
AAAY A%
+ +
V, Y
10 4 § 10
Figure P7.2 A Resistive Network
7.3 (a) Show that for the symmetrical lattice structure shown in
Figure P7.3,
7 =2, =05(Z, +2,)
7, =2y =05(Z, -2,)
(b) If Z, =10Q, Z, =4Q, find the equivalent y-
parameters.
Zd
ZC
ZC
Zd

Figure P7.3 Symmetrical Lattice Structure



7.4 (a) Find the equivalent z-parameters of Figure P7.4.
(b) If the network is terminated by a load of 20 ohms and connected

to a source of V; with a source resistance of 4 ohms, use MATLAB
to plot the frequency response of the circuit.

2H 2H
a—" Y VY Y Y g
+ +
10 Ohms
[ ] [ ]
+~ O025F
5 Ohms 5 Ohms
L aAVAVAV, AVAVAY

Figure P7.4 Circuit for Problem 7.4

7.5 For Figure P7.5
(a) Find the transmission parameters of the RC ladder network.
V.
(b) Obtain the expression for 72 .
1

£

(c) Use MATLAB to plot the phase characteristics of 7 .

1

R R R

Figure P7.5 RC Ladder Network
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7.6

For the circuit shown in Figure P7.6,

(a) Find the y-parameters.

(b) Find the expression for the input admittance.

(c) Use MATLAB to plot the input admittance as a function of

frequency.

R,

(@)

N

7.7

Figure P7.6 Circuit for Problem 7.6

For the op amp circuit shown in Figure P7.7, find the y-parameters.

Figure P7.7

Op Amp Circuit
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CHAPTER EIGHT

FOURIER ANALYSIS

In this chapter, Fourier analysis will be discussed. Topics covered are Fou-
rier series expansion, Fourier transform, discrete Fourier transform, and fast
Fourier transform. Some applications of Fourier analysis, using MATLAB,
will also be discussed.

8.1 FOURIER SERIES
If a function g(#) is periodic with period 7, i.e.,
g(t)=g(t+T)) (8.1)
and in any finite interval g(¢) has at most a finite number of discontinuities

and a finite number of maxima and minima (Dirichlets conditions), and in
addition,

T,
[ g(t)dt < oo (8.2)
0
then g(7) can be expressed with series of sinusoids. That is,
_% < -
g ="+ > a, cos(nwyt) +b, sin(nw,t) (8.3)
n=1
where
27 8.4
W, —— .
ST (84

and the Fourier coefficients @, and b, are determined by the following equa-
tions.

ta+Tp

Ig(t) cos(nw,t)dt n=0,12, ... (8.5)

t

a =—
n T
p

o
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ta+Tp

b, = - J’ g(t)sin(nw,t)dt n=0,1,2 ... (8.6)

P

a,
Equation (8.3) is called the trigonometric Fourier series. The term 7 in

Equation (8.3) is the dc component of the series and is the average value of
g(t) over a period. The term a, cos(nw,t) +b, sin(nw,t) is called the n-
th harmonic. The first harmonic is obtained when n = 1. The latter is also

called the fundamental with the fundamental frequency of w,. When n =2,
we have the second harmonic and so on.

Equation (8.3) can be rewritten as

ay <
g ="+ > 4, cos(nwt +0,) (8.7)
n=1
where
A, =Ja. +b] (8.8)
and
S, 0b, 0
O, = —tan %TE (8.9)

n

The total power in g(?) is given by the Parseval’s equation:

1t0+Tﬂ ooA2
P=— [g*(t)dt =4, +)
p Je =iy

(8.10)

where

A2 = %g @.11)

The following example shows the synthesis of a square wave using Fourier
series expansion.
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Example 8.1

Using Fourier series expansion, a square wave with a period of 2 ms, peak-to-
peak value of 2 volts and average value of zero volt can be expressed as

g(t) = z sm[(2n - 1217t ] (8.12)

where

£, =500 Hz

if a(t) is given as

42 1
a(t) = g Z msm[@n —1)217,¢ | (8.13)

Write a MATLAB program to plot a(z) from 0 to 4 ms at intervals of 0.05
ms and to show that a(?) is a good approximation of g(?).

Solution
MATLAB Script

% fourier series expansion
f=500; ¢ = 4/pi; dt = 5.0e-05;
tpts = (4.0e-3/5.0e-5) + 1;

forn=1:12

form = 1: tpts
sl(n,m) = (4/p1)*(1/(2*n - 1))*sin((2*n - 1)*2*pi*f*dt*(m-1));
end

end

for m = 1:tpts

al =sl(:,m);

a2(m) = sum(al);
end

fl = a2';

t =0.0:5.0e-5:4.0e-3;
clg

plot(t,f1)

xlabel('Time, s')
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ylabel('Amplitude, V')
title('Fourier series expansion')

Figure 8.1 shows the plot of a(t).

Fourier series expansian
1.4 T

Amplitude, %

Time, = -1

Figure 8.1 Approximation to Square Wave

By using the Euler’s identity, the cosine and sine functions of Equation (8.3)
can be replaced by exponential equivalents, yielding the expression

g(1) = Y ¢, exp(jnwyl) (8.14)
where
Tp/2
¢, =0 I g(t) exp(—jnw,t)dt (8.15)
P —t,/2
and
2
WO = —
T,
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Equation (8.14) is termed the exponential Fourier series expansion. The coeffi-
cient ¢, is related to the coefficients a, and bn of Equations (8.5) and (8.6)
by the expression

n

_l 2 2 -1 bn
c, = a, +bn [+ tan ( ) (8.16)
2 a

n

In addition, ¢, relates to 4, and @, of Equations (8.8) and (8.9) by the rela-
tion

) (8.17)
c, = 17
n 2 n
The plot of |c,| versus frequency is termed the discrete amplitude spectrum or

the line spectrum. It provides information on the amplitude spectral compo-
nents of g(#). A similar plot of [lc, versus frequency is called the dis-
crete phase spectrum and the latter gives information on the phase components
with respect to the frequency of g(?).

If an input signal x, ()

x,(t) =c,exp(jnw,t) (8.18)

passes through a system with transfer function F(w), then the output of the
system y, (¢)is

v, () = H(jnw,)c, exp(jnw,1) (8.19)

The block diagram of the input/output relation is shown in Figure 8.2.

X () ———» H(s) — y.(1)

Figure 8.2 Input/Output Relationship

However, with an input x(#) consisting of a linear combination of complex
excitations,
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x, ()= ) c,exp(jnw,t) (8.20)

n=-o

the response at the output of the system is

v, ()= Z H(jnw,)c, exp(jnw,t) (8.21)

n=-—oo

The following two examples show how to use MATLAB to obtain the coeffi-
cients of Fourier series expansion.

Example 8.2

For the full-wave rectifier waveform shown in Figure 8.3, the period is 0.0333s

and the amplitude is 169.71 Volts.

(a) Write a MATLAB program to obtain the exponential Fourier series
coefficients ¢, for n=0,1,2,.., 19

(b) Find the dc value.

(c) Plot the amplitude and phase spectrum.
200 - . . ;
150 1
=)
S
2100 |
o
E
<L
50 1
0 ! s s s
0 0.01 0.02 0.03 0.04 0.05

Time (s)

Figure 8.3 Full-wave Rectifier Waveform
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Solution

dc value

Figure 8.

diary ex8_2.dat

% generate the full-wave rectifier waveform

f1 = 60;

inv = 1/f1; inc = 1/(80*f1); tnum = 3*inv;

t = 0:inc:tnum;

gl = 120%sqrt(2)*sin(2*pi*f1*t);

g = abs(gl);

N = length(g);

%

% obtain the exponential Fourier series coefficients

num = 20;

for i = l:num
form= 1:N
cint(m) = exp(-j*2*pi*(i-1)*m/N)*g(m);
end

c(i) = sum(cint)/N;

end

cmag = abs(c);

cphase = angle(c);

%print dc value
disp('dc value of g(t)'); cmag(1)
% plot the magnitude and phase spectrum

f = (0:num-1)*60;

subplot(121), stem(f(1:5),cmag(1:5))
title(' Amplitude spectrum')
xlabel('Frequency, Hz")

subplot(122), stem(f(1:5),cphase(1:5))
title('Phase spectrum')
xlabel('Frequency, Hz")

diary

of g(t)

ans =
107.5344

4 shows the magnitude and phase spectra of Figure 8.3.
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Figure 8.4 Magnitude and Phase Spectra of a Full-wave
Rectification Waveform

Example 8.3
The periodic signal shown in Figure 8.5 can be expressed as
gt)=e™ -1<t <1
gt +2) =g()
(i) Show that its exponential Fourier series expansion can be expressed as

© (=1)"(e? — e
g(t) = z ( 2)(2(i jn;) )exp( JnTr) (8.22)

(ii) Using a MATLAB program, synthesize g(¢) using 20 terms, i.e.,

© 1999 CRC PressLLC
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a 0 (Z]) (o2 — e
s = 3 S extm)

0 2 4 t(s)

Figure 8.5 Periodic Exponential Signal

Solution
(1)

g(t)=Y c, exp(jmw, )

n=-o

where
1 Q/
c, =— | g(®)exp(—jnw,t)dt
"7, J¢
and
2 2mn
W =E——=——=TI
Tp 2
1 1
= —Iexp(—2t) exp(—jnTe)dt
2 =1
D@ =)
" 2(2+ jnm)
thus
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9 (Z1)' (02 — o2
s0= Y he e Fewnm)

(1) MATLAB Script

% synthesis of g(t) using exponential Fourier series expansion
dt=0.05;

tpts = 8.0/dt +1;
cst = exp(2) - exp(-2);

forn=-10:10
for m = 1:tpts
gl(nt1l,m) = ((0.5*cst*((-1)"n))/(2+j*n*pi))*(exp(j*n*pi*dt*(m-
D));
end
end

form = 1: tpts

g2 = gl(:,;m);
g3(m) = sum(g2);
end

g=g3}

t=-4:0.05:4.0;

plot(t,g)

xlabel('Time, s')
ylabel('Amplitude")
title('Approximation of g(t)")

Figure 8.6 shows the approximation of g(?).
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Approximation of git)
? T T T T T T T

Amplitude
[N ]

_1 1 1 1 1 1
-4 -3 -2 -1 1] 1 2 3 4

Time, s

Figure 8.6 An Approximation of g(?) .

8.2 FOURIER TRANSFORMS

If g(¢) is a nonperiodic deterministic signal expressed as a function of time

t, then the Fourier transform of g() is given by the integral expression:

G(f) = [g(t)exp(=j2myt)dt (8.23)

where
j=A-1 and

f denotes frequency

g(t) can be obtained from the Fourier transform G( f') by the Inverse Fou-

rier Transform formula:
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g(t) = [G(f)exp(j2myn)df (8.24)

For a signal g(#) to be Fourier transformable, it should satisfy the Dirichlet’s
conditions that were discussed in Section 8.1. If g(¢) is continuous and non-
periodic, then G( f) will be continuous and periodic. However, if g(?) is

continuous and periodic, then G( ') will discrete and nonperiodic; that is

g(t) = g(t £nT,) (8.25)

where
T, = period

then the Fourier transform of g(#) is

1 & 1
G(f) = ?pn:z_of"é(f _Fp) (8.26)
where
Tp/2
€y =0 I g(t)exp(—j2mmf,t)dt (8.27)
)4 —tp/2

8.2.1  Properties of Fourier transform

If g(¢) and G(f') are Fourier transform pairs, and they are expressed as

g() = G(f) (8.28)
then the Fourier transform will have the following properties:
Linearity

ag,(t) +bg,(t) = aG,(f)+bG,(f) (3.29)

where
a and b are constants



Time scaling

glat) = ﬁG%Q

G(t) = g(=f)

Duality

Time shifting
g(t—t,) = G(f)exp(-/j2717t,)
Frequency Shifting

exp(j2fc0)g(t) = G(f = fc)

Definition in the time domain

d;
E - jamen)

Integration in the time domain
t T)dr L G(f)+ ﬂé )
[8r = LGN+ 8)80

Multiplication in the time domain

gl(t)gZ(t) < J’Gl(/\)Gz(f_)‘)d/\

Convolution in the time domain

Igl(T)gz(t —T)dt = G, (f)G,(f)

© 1999 CRC PressLLC

(8.30)

(8.31)

(8.32)

(8.33)

(8.34)

(8.35)

(8.36)

(8.37)
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8.3 DISCRETE AND FAST FOURIER TRANSFORMS

Fourier series links a continuous time signal into the discrete-frequency do-
main. The periodicity of the time-domain signal forces the spectrum to be dis-
crete. The discrete Fourier transform of a discrete-time signal g[7n] is given

as
N-1

GLk]= Y glnlexp(=j2mk / N) k=01, N-1  (838)
n=0

The inverse discrete Fourier transform, g[n] is

N-1

gln] =) Glklexp(j2rmk/N) n=01..N-1  (839)
k=0

where

N is the number of time sequence values of g[n]. Itis also
the total number frequency sequence values in G[k].

T is the time interval between two consecutive samples of the
input sequence g[n].

F is the frequency interval between two consecutive samples
of the output sequence G[k].

N, T, and F are related by the expression
NT =— (8.40)

NT is also equal to the record length. The time interval, T, between samples
should be chosen such that the Shannon’s Sampling theorem is satisfied. This

means that 7 should be less than the reciprocal of 2f,,, where f, is the
highest significant frequency component in the continuous time signal g(#)
from which the sequence g[7] was obtained.  Several fast DFT algorithms
require N to be an integer power of 2.

A discrete-time function will have a periodic spectrum. In DFT, both the time
function and frequency functions are periodic. Because of the periodicity of
DFT, it is common to regard points from » = 1 through n = N/2 as positive,
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and points from n = N/2 through n = N - [ as negative frequencies. In addi-
tion, since both the time and frequency sequences are periodic, DFT values at
points n = N/2 through n = N - [ are equal to the DFT values at points n = N/2
through n = 1.

In general, if the time-sequence is real-valued, then the DFT will have real
components which are even and imaginary components that are odd. Simi-
larly, for an imaginary valued time sequence, the DFT values will have an odd
real component and an even imaginary component.

If we define the weighting function W, as

—jam
W,=e ¥ =e /7" (8.41)

Equations (8.38) and (8.39) can be re-expressed as

N-1
GLk]1=" glnwy" (8.42)
n=0
and
N-1
gln] =Y Glkw" (8.43)
k=0

The Fast Fourier Transform, FFT, is an efficient method for computing the
discrete Fourier transform. FFT reduces the number of computations needed
for computing DFT. For example, if a sequence has N points, and N is an in-

tegral power of 2, then DFT requires N : operations, whereas FFT requires

N N .
7 log, (N) complex multiplication, 7 log,(N) complex additions and

7 log,(N) subtractions. For N = 1024, the computational reduction from

DFT to FFT is more than 200 to 1.

The FFT can be used to (a) obtain the power spectrum of a signal, (b) do digi-
tal filtering, and (c) obtain the correlation between two signals.
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8.3.1 MATLAB function fft

The MATLAB function for performing Fast Fourier Transforms is

Jit(x)

where X is the vector to be transformed.

ft(x,N)

is also MATLAB command that can be used to obtain N-point fft. The vector
X is truncated or zeros are added to N, if necessary.

The MATLAB functions for performing inverse fft is

ifft(x).

[Zm, zp] = fftplot(x,ts)

is used to obtain fft and plot the magnitude z_  and z » of DFT of x. The

sampling interval is zs. Its default value is 1. The spectra are plotted versus
the digital frequency F. The following three examples illustrate usage of
MATLAB function fft.

m

Example 8.4

Given the sequence x[n] =(1,2,1). (a) Calculate the DFT of x[n]. (b)
Use the fft algorithm to find DFT of x[n]. (c) Compare the results of (a)
and (b).

Solution

(a) From Equation (8.42)

N-1

Glk]= ) elnWy’

From Equation (8.41)
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W =1

j2m
W) =e * =-05-;0866
jam
W) =e * =-05+;0866
Wy =wy =1

Using Equation (8.41), we have
2
G[0] = Zg[n]W;) =1+2 +1 =4
n=0

>
Gl1] = Zog[n]Wf = [0y +gl1w; +g[2W;
“ 1+ 2(-0.5 - j0.866) +( 05 +j0866) =05 —j0.866
2
Gl2] = Zog[n]Wf" = g[OW; + [l +gl2W;
= 1”'+2( 0.5 +;0.866) +( 05 —j0.866) =05 +j0.866
(b) The MATLAB program for performing the DFT of x[n] is
MATLAB Seript
diary ex8_4.dat
%
x=[121];

xfft = fft(x)
diary

The results are

xfft =
4.0000 -0.5000-0.8660i -0.5000 + 0.8660i

(c) It can be seen that the answers obtained from parts (a) and (b) are
identical.



Example 8.5
Signal g(?) is given as
g(1) = 4e™ cos[2m(10)]u(z)

(a) Find the Fourier transform of g(¢),i.e., G(f).
(b) Find the DFT of g(¢) when the sampling interval is 0.05 s with N

=1000.

() Find the DFT of g(#) when the sampling interval is 0.2 s with N =
250.

(d) Compare the results obtained from parts a, b, and c.

Solution

(a) g(t) canbe expressed as

1

jom = -jon

g(t) =4e™ %e Se gl(t)

Using the frequency shifting property of the Fourier Transform, we get

2
2+ 20 f —10) 2+ 21K f +10)

(b, ¢) The MATLAB program for computing the DFT of g() is

G(f) =

MATLAB Script

% DFT of g(t)

% Sample 1, Sampling interval of 0.05 s
ts1 =0.05; % sampling interval

fs1 = 1/ts1; % Sampling frequency

nl =1000; % Total Samples

ml =1:nl; % Number of bins

sintl =ts1*(ml - 1); % Sampling instants
freql = (m1 - 1)*fsl/nl; % frequencies
gb = (4*exp(-2*sintl)).*cos(2*pi*10*sint1);
gb_abs = abs(fft(gb));

subplot(121)
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plot(freql, gb_abs)
title('DFT of g(t), 0.05s Sampling interval')
xlabel('Frequency (Hz)")

% Sample 2, Sampling interval of 0.2 s
ts2 =10.2; % sampling interval

fs2 = 1/ts2; % Sampling frequency

n2 =250; % Total Samples

m2=1:n2; % Number of bins

sint2 = ts2*(m2 - 1); % Sampling instants
freq2 = (m2 - 1)*fs2/n2; % frequencies

gc = (4*exp(-2*sint2)).*cos(2*pi*10*sint2);
gc_abs = abs(fft(gc));

subplot(122)

plot(freq2, gc_abs)

title('DFT of g(t), 0.2s Sampling interval')
xlabel('Frequency (Hz)")

The two plots are shown in Figure 8.7.

OFT of g(t), 0.05s Sarpling interal OFT of git), 0.25 Sampling interal
. 14 r .

45

40t

Jar

30t

28t

20¢

0 10 20 a 2 4 5
Frequency (Hz) Frequency (Hz)

Figure 8.7 DFT of g(?)

(d) From Figure 8.7, it can be seen that with the sample interval of 0.05 s,
there was no aliasing and spectrum of G k] in part (b) is almost the same
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as that of G( f) of part (a). With the sampling interval being 0.2 s (less
than the Nyquist rate), there is aliasing and the spectrum of G[k] is dif-
ferent from that of G(f).

Example 8.6

Given a noisy signal
g(t) = sin(277,¢) +0.5n(¢)

where
f1 = 100 Hz

n(t) is a normally distributed white noise. The duration of g()is 0.5 sec-

onds. Use MATLAB function rand to generate the noise signal. Use
MATLARB to obtain the power spectral density of g().

Solution

A representative program that can be used to plot the noisy signal and obtain
the power spectral density is

MATLAB Script

% power spectral estimation of noisy signal
t=0.0:0.002:0.5;
f1 =100;

% generate the sine portion of signal
x = sin(2*pi*f1*t);

% generate a normally distributed white noise
n = 0.5*randn(size(t));

% generate the noisy signal

y = X+n;

subplot(211), plot(t(1:50),y(1:50)),
title('Nosiy time domain signal’)

% power spectral estimation is done
yfft = fft(y,256);



len = length(yfft);
pyy = yfft.*conj(yfft)/len;
f=(500./256)*(0:127);

subplot(212), plot(f,pyy(1:128)),
title('power spectral density"),
xlabel('frequency in Hz')

The plot of the noisy signal and its spectrum is shown in Figure 8.8. The am-
plitude of the noise and the sinusoidal signal can be changed to observe their
effects on the spectrum.

Moisy time domain signal

_2 1 1 1 1
0 0.02 0.04 0.06 0.0g a1
power spectral density
ED T T T T
40+ .
20+ .
D 1 1 o -
0 a0 100 150 200 280

frequency in Hz

Figure 8.8 Noisy Signal and Its Spectrum
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EXERCISES

The triangular waveform, shown in Figure P8.1 can be expressed as

8Aoo n+l
=5 o0

where

cos((2n ~Dw,t)

Figure P8.1 Triangular Waveform

If A =1, T =8 ms,and sampling interval is 0.1 ms.

(a) Write MATLAB program to resynthesize g(#) if 20
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8.2

83

terms are used.

(b) What is the root-mean-squared value of the function that is
the difference between g(#) and the approximation to
g(t) when 20 terms are used for the calculation of g(¢) ?

A periodic pulse train  g(#) is shown in Figure P8.2.

a(t)

Figure P8.2 Periodic Pulse Train

If () can be expressed by Equation (8.3),

(a) Derive expressions for determining the Fourier Series coeffi-
cients a, and b,,.

(b) Write a MATLAB program to obtain a, and b, for n=0,
1, ... , 10 by using Equations (8.5) and (8.6).

(c) Resynthesis g(z) using 10 terms of the values a,,, b,
obtained from part (b).

For the half-wave rectifier waveform, shown in Figure P8.3, with a
period of 0.01 s and a peak voltage of 17 volts.

(a) Write a MATLAB program to obtain the exponential
Fourier series coefficients ¢, for n= 0,1, ....... , 20.

(b) Plot the amplitude spectrum.

() Using the values obtained in (a), use MATLAB to
regenerate the approximation to g(¢) when 20 terms of the

exponential Fourier series are used.
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20

—
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T

Amplitude (V)
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0

0 0.01 0.02 0.03
Time (s)
Figure P8.3 Half-Wave Rectifier Waveform
8.4 Figure P8.4(a) is a periodic triangular waveform.
v(t)
,,,,,,,,,,,, T T T T T T T T
2 0 2 4 6 ts)

Figure P8.4(a) Periodic Triangular Waveform
(a) Derive the Fourier series coefficients @, and b, .

(b) With the signal V() of the circuit shown in P8.4(b),
derive the expression for the current ().
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~YA
—» +V, (1) -
i(t) 0
+ +
3Q § V_(t
V(1) =
Figure P8.4(b) Simple RL Circuit
(c) Plot the voltages V,(¢), v, () and also the sum of
Vp(t) and v, (2).
(d) Compare the voltages of v, (¢) +v, () to V(1.
8.5 If the periodic waveform shown in Figure 8.5 is the input of the
circuit shown in Figure P8.5.
(a) Derive the mathematical expression for v.(?).

(b) Use MATLAB to plot the signals g(#) and v (?).

a(t) § 40 —~2F V(1)

\\}—

Figure P8.5 RC Circuit



© 1999 CRC PressLLC

8.6

8.7

8.8

The unit sample response of a filter is given as
Hal=(0 -1 -1 0 1 1 0

(a) Find the discrete Fourier transform of 4[n]; assume that

the values of /A[7] not shown are zero.

. . . (]
(b) If the input to the filter is x[n] = Sln%%t[n], find the

output of the filter.

g(¢) = sin(20077) +sin(400 77)

(a) Generate 512 points of g(#). Using the FFT algorithm,
generate and plot the frequency content of g(?).

Assume a sampling rate of 1200 Hz. Find the power
spectrum.

(b) Verify that the frequencies in g(¢) are observable in the
FFT plot.

Find the DFT of
g(1) =e™u(t)
(a) Find the Fourier transform of g(t).

(b) Find the DFT of g(¢) using the sampling interval of 0.01 s
and time duration of 5 seconds.

() Compare the results obtained from parts (a) and (b).
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CHAPTER NINE
DIODES
In this chapter, the characteristics of diodes are presented. Diode circuit

analysis techniques will be discussed. Problems involving diode circuits are
solved using MATLAB.

9.1 DIODE CHARACTERISTICS

Diode is a two-terminal device. The electronic symbol of a diode is shown in
Figure 9.1(a). Ideally, the diode conducts current in one direction. The cur-
rent versus voltage characteristics of an ideal diode are shown in Figure 9.1(b).

anode | | cathode
O O
i . B
(a)
i
\'
(b)

Figure 9.1 Ideal Diode (a) Electronic Symbol
(b) I-V Characteristics

The I-V characteristic of a semiconductor junction diode is shown in Figure
9.2. The characteristic is divided into three regions: forward-biased, reversed-
biased, and the breakdown.



breakdown ' reversed- forward-
biased biased
0 V

Figure 9.2 1-V Characteristics of a Semiconductor Junction Diode

In the forward-biased and reversed-biased regions, the current, i, and the
voltage, v, of a semiconductor diode are related by the diode equation

i=1e"" —1] (9.1)
where
I is reverse saturation current or leakage current,
n is an empirical constant between 1 and 2,
Vs, is thermal voltage, given by
kT
V,=— 9.2)
q
and

is Boltzmann’s constant = 1.38x107%J/°K,
is the electronic charge = 1.6x10™" Coulombs,

q
T is the absolute temperature in °K

At room temperature (25 °C), the thermal voltage is about 25.7 mV.
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9.1.1 Forward-biased region
In the forward-biased region, the voltage across the diode is positive. If we

assume that the voltage across the diode is greater than 0.1 V at room
temperature, then Equation (9.1) simplifies to

i=1I,e""" (9.3)
For a particular operating point of the diode (i = [, and v =V)), we have
i, =1, (9.4)

To obtain the dynamic resistance of the diode at a specified operating point, we
differentiate Equation (9.3) with respect to v, and we have

di  Ie"""
— s
dv nV,

. (vp/nVy)
di Ie™™ " I,

dv ! nv, nv,

and the dynamic resistance of the diode, 7, , is

PR P L (9.5)

CodiT g, '
From Equation (9.3), we have

— e(V/”VT)

I
thus

v
In(i) =—— +In(/ 9.6
()= *ndls) ©0:6)

Equation (9.6) can be used to obtain the diode constants » and [, given the
data that consists of the corresponding values of voltage and current. From
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1
Equation (9.6), a curve of v versus In(Z) will have a slope given by 7
nvr
and y-intercept of In(/ ¢). The following example illustrates how to find 7
and [ from an experimental data. Since the example requires curve fitting,

the MATLAB function pelyfit will be covered before doing the example.

9.1.2 MATLAB function polyfit

The polyfit function is used to compute the best fit of a set of data points to a
polynomial with a specified degree. The general form of the function is

coeff _xy = polyfit(x, y, n) (9.7)

where
X and ) are the data points.

n is the n” degree polynomial that will fit the vectors X and y.

coeff _xy is apolynomial that fits the data in vector } to X in the

least square sense. coeff Xy returns n+1 coeffi-
cients in descending powers of X.

Thus, if the polynomial fit to data in vectors X and )y is given as
coeff xy(x)=c,x" +cx"" +... +c,

The degree of the polynomial is n and the number of coefficients m = n +1
and the coefficients (c;, ¢,, ..., C,,) are returned by the MATLAB polyfit
function.

Example 9.1

A forward-biased diode has the following corresponding voltage and current.
Use MATLAB to determine the reverse saturation current, /¢ and diode pa-
rameter 7.



Forward Voltage, V Forward Current, A
0.1 0.133e-12

0.2 1.79e-12

0.3 24.02e-12

0.4 0.321e-9

0.5 4.31e-9

0.6 57.69¢-9

0.7 7.726e-7

Solution

diary ex9_1.dat
% Diode parameters

vt=25.67¢-3;

v=[0.10.20.30.40.50.60.7];

i = [0.133e-12 1.79¢-12 24.02¢-12 321.66¢-12 4.31e-9 57.69¢-9
772.58e-9];

%
Ini = log(i); % Natural log of current

% Coefficients of Best fit linear model is obtained
p_fit = polyfit(v,Ini,1);

% linear equationis y=m*x+b
b =p_fit(2);

m = p_fit(1);

ifit = m*v + b;

% Calculate Is and n
Is = exp(b)
n = 1/(m*vt)

% Plot v versus In(i), and best fit linear model

plot(v,ifit,'w', v, Ini,'ow')
axis([0,0.8,-35,-10])
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xlabel('"Voltage (V)"
ylabel('In(i)")
title('Best fit linear model")
diary

The results obtained from MATLAB are
Is = 9.9525e-015
n = 1.5009

Figure 9.3 shows the best fit linear model used to determine the reverse satura-
tion current, /, and diode parameter, .

Best fit linear model
'1 0 T T T

In(i)

25 |

_35 I I 1
0 0.2 04 0.6 0.8

Voltage (V)

Figure 9.3 Best Fit Linear Model of Voltage versus Natural
Logarithm of Current
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9.1.3 Temperature effects

From the diode equation (9.1), the thermal voltage and the reverse saturation
current are temperature dependent. The thermal voltage is directly propor-
tional to temperature. This is expressed in Equation (9.2). The reverse satura-

tion current / increases approximately 7.2% /°C for both silicon and germa-

nium diodes. The expression for the reverse saturation current as a function of
temperature is

I4(Ty) = I (T,)es ) ©8)

where
kS = 0.072 /°C.

1} and T, are two different temperatures.

Since e”” is approximately equal to 2, Equation (9.8) can be simplified and
rewritten as

Io(T,) = I(T;)2 "™ (9.9)

Example 9.2

The saturation current of a diode at 25 °C is 10 "> A. Assuming that the
emission constant of the diode is 1.9, (a) Plot the i-v characteristic of the di-

ode at the following temperatures: 1; = 0°C, 7, =100 °C.

Solution
MATLAB Script

% Temperature effects on diode characteristics

%

k=1.38e-23; q=1.6e-19;
t1 =273 +0;

t2 =273 + 100;

Is1 =1.0e-12;

ks =0.072;

1s2 = Is1*exp(ks*(t2-t1));

v=0.45:0.01:0.7;



11 = Is1*exp(q*v/(k*t1));
12 = 1s2*exp(q*v/(k*t2));

plot(v,11,'wo",v,12,'w+")
axis([0.45,0.75,0,10])

title('Diode I-V Curve at two Temperatures')
xlabel('Voltage (V)"

ylabel('Current (A)")

text(0.5,8,'0 is for 100 degrees C')
text(0.5,7, '+ is for 0 degree C")

Figure 9.4 shows the temperature effects of the diode forward characteristics.

Diode |-V Curve at two Temperatures

10 . ; . ; .
8t o is for 100 degrees C © -
+ is for 0 degree C
< o -
= @]
L
5
4_ i
O Lo
+
2t ° ]
o+
Q-i-
@
mmmmmmmmmmmmmt‘hfﬁﬂj&@‘ 1 1

0
0.45 0.5 0.55 0.6 0.65 0.7 0.75
Voltage (V)

Figure 9.4 Temperature Effects on the Diode Forward
Characteristics
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9.2 ANALYSIS OF DIODE CIRCUITS

Figure 9.5 shows a diode circuit consisting of a dc source V)., resistance R,
and a diode. We want to determine the diode current /,, and the diode volt-

age V.

Figure 9.5 Basic Diode Circuit

Using Kirchoff Voltage Law, we can write the loadline equation

Ve = RI, +V, (9.10)
The diode current and voltage will be related by the diode equation

i = ISe(VD/nVr) (9.11)

Equations (9.10) and (9.11) can be used to solve for the current /,, and volt-

age V.

There are several approaches for solving /,, and V,. In one approach,

Equations (9.10) and (9.11) are plotted and the intersection of the linear curve
of Equation (9.10) and the nonlinear curve of Equation (9.11) will be the op-
erating point of the diode. This is illustrated by the following example.
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Example 9.3

For the circuit shown in Figure 9.5, if R =10kQ, V. = 10V, and the

reverse saturation current of the diode is 10 "> A and n =2.0. (Assume a
temperature of 25 °C.)

(a) Use MATLAB to plot the diode forward characteristic curve and the
loadline.

(b) From the plot estimate the operating point of the diode.

Solution

MATLAB Script

% Determination of operating point using
% graphical technique

%

% diode equation

k =1.38e-23;q = 1.6e-19;

tl =273 +25; vt =k*tl/q;

vl =0.25:0.05:1.1;

il = 1.0e-12*exp(v1/(2.0*vt));

% load line 10=(1.0e4)i2 + v2

vde = 10;
r=1.0e4;
v2 =0:2:10;

i2 = (vdc - v2)/r;

% plot

plot(vl,il,'w', v2,i2,'w")

axis([0,2, 0, 0.0015])

title('Graphical method - operating point')
xlabel('Voltage (V)")

ylabel('Current (A)")
text(0.4,1.05¢e-3,Loadline")
text(1.08,0.3e-3,'Diode curve')

Figure 9.6 shows the intersection of the diode forward characteristics and the
loadline.
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x 10° Graphical method - operating point

1.5 .

Current (A)

0.5

U 1

Loadline

Diode curve

0 0.5

1

1.5 2

Voltage (V)

Figure 9.6 Loadline and Diode Forward Characteristics

From Figure 9.6, the operating point of the diode is the intersection of the
loadline and the diode forward characteristic curve. The operating point is ap-

proximately

1, =09 mA
V, =07V

The second approach for obtaining the diode current /,, and diode voltage

V, of Figure 9.5 is to use iteration. Assume that ([ Dls VDI) and

(1 D25 Vm) are two corresponding points on the diode forward characteris-
tics. Then, from Equation (9.3), we have

- (vpi/nVr)
i =1e

. — (vpa/nV7)
ip, =1ge

(9.12)

(9.13)
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Dividing Equation (9.13) by (9.12), we have

ID2 = e(VDZ_VDl/nVT) (9.14)
D1
Simplifying Equation (9.14), we have
7, 0
Vp, =V trV, In[F—"0 (9.15)

Using iteration, Equation (9.15) and the loadline Equation (9.10) can be used
to obtain the operating point of the diode.

To show how the iterative technique is used, we assume that /,, = 1mA and
V5, =0.7V. Using Equation (9.10), [, is calculated by

Ve =V,
I, :—DCR = (9.16)

Using Equation (9.15), V, is calculated by

07,0
Vo =V, +0V, ln%jg (9.17)

Using Equation (9.10), [, is calculated by

V..=V
1, =DCTD2 (9.18)

Using Equation (9.15) , Vp; is calculated by

a7, d
Vs =V, 0V, IHB.[_DH (9.19)

Similarly, /,, and V,, are calculated by



V. .=V
Iy, = DCTM (9.20)

1
Ve =V, +nV, In(=2 9.21)
IDI

The iteration is stopped when V,, is approximately equal to V,, _, or [,
is approximately equal to /,, _; to the desired decimal points. The iteration

technique is particularly facilitated by using computers. Example 9.4 illus-
trates the use of MATLAB for doing the iteration technique.

Example 9.4

Redo Example 9.3 using the iterative technique. The iteration can be stopped

when the current and previous value of the diode voltage are different by 107
volts.

Solution
MATLAB Script

% Determination of diode operating point using
% iterative method

k =1.38e-23;q = 1.6e-19;

tl =273 +25; vt =k*tl/q;

vde = 10;
r=1.0e4;
n=2;

id(1) = 1.0e-3; vd(1) = 0.7,
reltol = 1.0e-7;

1=1;
vdiff=1;
while vdiff > reltol

id(i+1) = (vdc - vd(i))/r;
vd(i+1) = vd(i) + n*vt*log(id(i+1)/id(i));
vdiff = abs(vd(it+1) - vd(i));
1=1+1;
end
k=0:1-1;
% operating point of diode is (vdiode, idiode)
idiode = id(i)
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vdiode = vd(i)

% Plot the voltages during iteration process
plot(k,vd,'wo")

axis([-1,5,0.6958,0.701])

title('Diode Voltage during Iteration')
xlabel('Iteration Number")

ylabel('Voltage, V')

From the MATLAB program, we have

idiode =
9.3037¢-004

vdiode =
0.6963

Thus /,, =0.9304 mA and V,, =0.6963 V. Figure 9.7 shows the diode
voltage during the iteration process.

Diode Voltage during Iteration

0.7005+ .

Iteration Number

Figure 9.7 Diode Voltage during Iteration Process
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9.3 HALF-WAVE RECTIFIER

A half-wave rectifier circuit is shown in Figure 9.8. It consists of an alternat-
ing current (ac) source, a diode and a resistor.

||}—

Figure 9.8 Half-wave Rectifier Circuit

Assuming that the diode is ideal, the diode conducts when source voltage is
positive, making

Vo = Vg when vy = 0 (9.22)

When the source voltage is negative, the diode is cut-off, and the output volt-
age is

v, =0 when V¢ < 0 (9.23)

Figure 9.9 shows the input and output waveforms when the input signal is a
sinusoidal signal.

The battery charging circuit, explored in the following example, consists of a
source connected to a battery through a resistor and a diode.
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Figure 9.9 (a) Input and (b) Output Waveforms of a Half-wave
Rectifier Circuit

Example 9.5

A battery charging circuit is shown in Figure 9.10. The battery voltage is
V, =118 V. The source voltage is V¢ (¢) =18sin(12077) V and the

resistance is R = 100 Q. Use MATLAB (a) to sketch the input voltage, (b)
to plot the current flowing through the diode, (c) to calculate the conduction
angle of the diode, and (d) calculate the peak current. (Assume that the diode
is ideal.)

R

+
tfv
v, B

Figure 9.10 A Battery Charging Circuit
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Solution:

When the input voltage V¢ is greater than }/,, the diode conducts and the di-

ode current, I 4> 1s given as

_Vs _VB

i R (9.24)

The diode starts conducting at an angle 6, givenby v, =2V,, ie,
18sin6, =18sin(12077,) =V, =118

The diode stops conducting current when vy £ Vp
18sin6, =18sin(12072,) =V,

due to the symmetry

92:7-[_6

MATLAB Program:

diary ex9 5.dat

% Baltery charging circuit
period = 1/60;

period2 = period*2;

inc =period/100;

npts = period2/inc;

vb=11.8;
t=1[
fori= L:npts

t(i) = (i-1)*inc;

vs(i) = 18*sin(120*pi*t(i));
if vs(i) > vb
idiode(i) = (vs(i) -vb)/r;
else
idiode(i) = 0;
end

end
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subplot(211), plot(t,vs)
%title('Input Voltage')
xlabel('Time (s)")

ylabel('Voltage (V)')
text(0.027,10, 'Input Voltage')
subplot(212), plot(t,idiode)
%title('Diode Current')
xlabel('Time (s)")
ylabel('Current(A)")

text(0.027, 0.7¢-3, 'Diode Current')

% conduction angle

thetal = asin(vb/18); theta2 = pi - thetal;
acond = (theta2 -thetal)/(2*pi)

% peak current

pecurrent = (18*sin(pi/2) - vb)/r

% pcurrent = max(idiode)

diary

The conduction angle, acond, and the peak current, pcurrent, are

acond =
0.2724

pcurrent =
0.0620

Figure 9.11 shows the input voltage and diode current.

The output of the half-wave rectifier circuit of Figure 9.8 can be smoothed by
connecting a capacitor across the load resistor. The smoothing circuit is shown
in Figure 9.12.

When the amplitude of the source voltage V' is greater than the output volt-

age, the diode conducts and the capacitor is charged. When the source voltage
becomes less than the output voltage, the diode is cut-off and the capacitor
discharges with the time constant CR. The output voltage and the diode cur-
rent waveforms are shown in Figure 9.13.
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Figure 9.11 Input Voltage and Diode Current

Figure 9.12 Capacitor Smoothing Circuit
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t, ot t, t

Figure 9.13 (a) Output Voltage and (b) Diode Current for Half-
wave Rectifier with Smoothing Capacitor Filter

In Figure 9.12(a), the output voltage reaches the maximum voltage V, , at
time £ = ¢, to ¢ =, the diode conduction ceases, and capacitor discharges

through R. The output voltage between times #, and f;is given as

b

vo(t)=V e *¢ th<t<t (9.25)

The peak to peak ripple voltage is defined as

37h
V. =v(ty) =v(t3) =V, —V,e gRT@

m m

U _Pe=t0r] (9.26)
=V,0-e Q’FQD

m

O O

For large values C such that CR >> (t Pl 28 ), we can use the well-known ex-

ponential series approximation

e’ UOl- x for IxO<<1



© 1999 CRC PressLLC

Thus, Equation (9.26) approximates to

V(s — 1)
V,=——7"— 9.27
, RC 9:27)
The discharging time for the capacitor, (l ;L ), is approximately equal to

the period of the input ac signal, provided the time constant is large. That is,

1
t,—t, 0T= — (9.28)
0

where
£ o 1s the frequency of the input ac source voltage.

Using Equation (9.28), Equation (9.27) becomes

v

14 = (9.29)
r( peak —to—peak)
peak=to=peak) = £ CR

For rectifier circuits, because RC >>T , the output voltage decays for a small
fraction of its fully charged voltage, and the output voltage may be regarded as
linear. Therefore, the output waveform of Figure 9.12 is approximately tri-
angular. The rms value of the triangular wave is given by

V edaKk —1lo— pea. V
V,, = = . (9.30)
243 2\3f,CR
The approximately dc voltage of the output waveform is
v, v,
V.=V, ——=V (9.31)

e Tim Ty T f CR

9.3.1 MATLAB function fzero

The MATLAB fzero is used to obtain the zero of a function of one variable.
The general form of the fzero function is



fzero(' function', x1)

fzero(' function', x1, tol)
where

fzero(' funct',x1) finds the zero of the function funct(x) that

is near the point x1.

fzero(' funct', x1, tol) returns zero of the function funct(x)

accurate to within a relative error of 7o/.

The MATLAB function fzero is used in the following example.

Example 9.6

For a capacitor smoothing circuit of Figure 9.12, if R = 10KQ, C = 100pF,
and v (1) = 1204/2 sin(12077) ,

(a) use MATLAB to calculate the times f,, ;, of Figure 9.12;

(b) compare the capacitor discharge time with period of the input signal.

Solution

T
The maximum value of V¢ (?) is 1204/2 , and it occurs at 12072, = 5

thus

1
t, =—— = 000417
27 240 ®

The capacitor discharge waveform is given by
(t-1)
v () = 120\/5exp@~R—C2 1, <t<t,

Attt =t, ve(t) =vg(2),
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Defining v(#) as

v(t) = 12082 sin(12071(¢ ~1,)) _120\56@@0 - tz)g

RC
Then,
t,—t
W(t,) =0 = 12042 sin(120"(ls 1, )) ‘120*56”’%_(31?—(72%
Thus,

v(t,) = 0 = sin(1207(¢, ~1,)) —expg—%g 9.32)

MATLARB is used to solve Equation (9.32)
MATLAB Script

diary ex9_6.dat

% Capacitance discharge time for smoothing capacitor
% filter circuit

vm = 120%*sqrt(2);

f0 = 60; r =10e3; ¢ = 100e-6;

t2 = 1/(4*10);

tp = 1/10;

% use MATLAB function fzero to find the zero of a

% function of one variable

rc = r¥*c;

t3 = fzero('sinexpfl',4.5%t2);

tdis_cap = t3-t2;

fprintf('The value of 2 is %9.5f s\n', t2)

fprintf('The value of 3 is %9.5f s\n', t3)

fprintf('The capacitor discharge time is %9.5f s\n', tdis_cap)
fprintf('The period of input signal is %9.5f s\n', tp)

diary

%

function y = sinexpf1(t)

t2 = 1/240; tp = 1/60;

rc = 10e3*100e-6;

y = sin(120*pi*(t-tp)) - exp(-(t-t2)/rc);
end

The results are
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The value of t2 is 0.00417 s

The value of t3 is  0.02036 s

The capacitor discharge time is 0.01619 s
The period of input signal is 0.01667 s

9.4 FULL-WAVE RECTIFICATION

A full-wave rectifier that uses a center-tapped transformer is shown in Figure
9.14.

D1
[ ] M +
+
. V(1) RV
* /
Vi(t)
D2

Figure 9.14 Full-wave Rectifier Circuit with Center-tapped
Transformer

When v (¢) is positive, the diode D1 conducts but diode D2 is off, and the

output voltage v, (¢) is given as

vo(t) =vs (1) =V, (9.33)
where

V', is a voltage drop across a diode.
When V() is negative, diode D1 is cut-off but diode D2 conducts. The

current flowing through the load R enters it through node A. The output volt-
age is

(1) = s ()| -V, (9.34)
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A full-wave rectifier that does not require a center-tapped transformer is the
bridge rectifier of Figure 9.15.

R V(1)

Figure 9.15 Bridge Rectifier

When v (#) is negative, the diodes D2 and D4 conduct, but diodes D1 and

D3 do not conduct. The current entering the load resistance R enters it
through node A. The output voltage is

w(1) =|vg ()] =27, (9.35)

Figure 9.16 shows the input and output waveforms of a full-wave rectifier cir-
cuit assuming ideal diodes.

The output voltage of a full-wave rectifier circuit can be smoothed by connect-
ing a capacitor across the load. The resulting circuit is shown in Figure 9.17.

The output voltage and the current waveforms for the full-wave rectifier with
RC filter are shown in Figure 9.18.
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Figure 9.16 (a) Input and (b) Output Voltage Waveforms for Full-
wave Rectifier Circuit

Figure 9.17 Full-wave Rectifier with Capacitor Smoothing Filter
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Figure 9.18 (a) Voltage and (b) Current Waveform of a Full-wave
Rectifier with RC Filter

From Figures 9.13 and 9.18, it can be seen that the frequency of the ripple
voltage is twice that of the input voltage. The capacitor in Figure 9.17 has
only half the time to discharge. Therefore, for a given time constant, CR, the
ripple voltage will be reduced, and it is given by

Vm
I/r(peak—ta—peak) = 2f CR (936)
where
v, is peak value of the input sinusoidal waveform
fo frequency of the input sinusoidal waveform

The rms value of the ripple voltage is

e

Vv o =—" 9.37
™ 4,J3f CR (©-37)

and the output dc voltage is approximately

© 1999 CRC PressLLC



© 1999 CRC PressLLC

V.=V L—V M 9.38
de — "m 2 “Um 4foCR ( )

Example 9.7

For the full-wave rectifier with RC filter shown in Figure 9.17, if
V¢ () =20sin(12077) and R=10KQ, C= 100uF, use MATLAB to find
the

(a) peak-to-peak value of ripple voltage,

(b) dc output voltage,

(c) discharge time of the capacitor,

(d) period of the ripple voltage.

Solution

Peak-to-peak ripple voltage and dc output voltage can be calculated using
Equations (9.36) and (9.37), respectively. The discharge time of the capacitor

is the time (t3 -t ) of Figure 9.19.

V. (t) V. (t)

Figure 9.19 Diagram for Calculating Capacitor Discharge Time

O (¢t—t)0
v () =V, XPT Cl (9.39)
v,(1) = |V, sin[271(t = 1,)]] (9.40)

v,(?) and v,(?) intersect at time 7.

The period of input waveform, v, (¢)is 7= ———s

240
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=_——5s, and ¢, =

T T 1
4~ 240 2 120"

t =

MATLAB Script

diary ex9 7.dat

% Full-wave rectifier

%

period = 1/60;

tl = period/4;

vripple = 20/(2*¥60*10e3*100e-6);

vdc = 20 - vripple/2;

t3 = fzero('sinexpf2',0.7*period);

tdis_cap =t3 - tl;

fprintf('Ripple value (peak-peak) is %9.5f V\n', vripple)
fprintf('DC output voltage is %9.5f V\n', vdc)
fprintf('Capacitor discharge time is %9.5f s\n', tdis_cap)
fprintf('Period of ripple voltage is %9.5f s\n', 0.5*period)
diary

%

%

function y = sinexpf2(t)

tl = 1/240; t2 = 2*t1; rc = 10e3*100e-6;

y =20(sin(120*pi*(t - t2))) - exp(-(t-t1)/rc);
end

The results are

Ripple value (peak-peak) is 0.16667 V
DC output voltage is 19.91667 V
Capacitor discharge time is  0.00800 s
Period of ripple voltage is 0.00833 s

(9.41)
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9.5 ZENER DIODE VOLTAGE REGULATOR CIRCUITS

The zener diode is a pn junction diode with controlled reverse-biased break-
down voltage. Figure 9.20 shows the electronic symbol and the current-voltage
characteristics of the zener diode.

+ v -
(a)
[
\
--------------------------------------------------------- L,
slope = 1/r,
--------------------------------------------------------- |
(b)
Figure 9.20 Zener Diode (a) Electronic Symbol (b) I-V

Characteristics

I, is the minimum current needed for the zener to breakdown. /,,, is the

maximum current that can flow through the zener without being destroyed. It
is obtained by

/

M

P
=—Z (9.42)
VZ

where P, is the zener power dissipation.

The incremental resistance of the zener diode at the operating point is specified
by
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(9.43)

One of the applications of a zener diode is its use in the design of voltage ref-
erence circuits. A zener diode shunt voltage regulator circuit is shown in Fig-
ure 9.21

Rs
| —V\N» i'l '
+ v S | + ;R VO
- s i /ZY/VZ I

Figure 9.21 Zener Diode Shunt Voltage Regulator Circuit

The circuit is used to provide an output voltage, V/,, which is nearly constant.

When the source voltage is greater than the zener breakdown voltage, the zener
will break down * and the output voltage will be equal to the zener breakdown
voltage. Thus,

V=V, (9.44)
From Kirchoff current law, we have

I,=1,+1, (9.45)
and from Ohm’s Law, we have

— Vs =V,

I R
s

(9.46)
and

1, =20 0.47
L_RL ( )



Assuming the load resistance R, is held constant and V' (which was origi-
nally greater than V7, ) is increased, the source current /¢ will increase; and
since [, is constant, the current flowing through the zener will increase. Con-

versely, if Ris constant and Vg decreases, the current flowing through the
zener will decrease since the breakdown voltage is nearly constant; the output
voltage will remain almost constant with changes in the source voltage V.

Now assuming the source voltage is held constant and the load resistance is
decreased, then the current [/ , Wwill increase and 1 , will decrease. Con-

versely, if Vs is held constant and the load resistance increases, the current

through the load resistance /, will decrease and the zener current /, will

increase.

In the design of zener voltage regulator circuits, it is important that the zener
diode remains in the breakdown region irrespective of the changes in the load
or the source voltage. There are two extreme input/output conditions that will
be considered:

(1) The diode current /, is minimum when the load current [, is

maximum and the source voltage V is minimum.

(2) The diode current /, is maximum when the load current /, is

minimum and the source voltage V is maximum.

From condition (1) and Equation (9.46), we have

V min V
Ry =— z (9.48)
]L,max + ]Z,min
Similarly, from condition (2), we get
Ve o =V,
Ry =—m 2 (9.49)
]L,min + IZ,max

Equating Equations (9.48) and (9.49) , we get

(VS,min - VZ )(IL,min + ]Z,max) = (VS,max _VZ )(]L,max +IZ,min) (950)
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We use the rule of thumb that the maximum zener current is about ten times
the minimum value, that is

]Z,min = O'IIZ,max (951)
Substituting Equation (9.49) into Equation (9.51), and solving for [ Zmax> WE
obtain

I _ IL,min (VZ - VS,min) + IL,max (VS,max - VZ) (9 52)

Z,max - .
¢ VS,min - 09VZ - O‘IVS,max
Knowing [ z.max> W€ can use Equation (9.49) to calculate R; . The following

example uses MATLAB to solve a zener voltage regulator problem.

Example 9.8

A zener diode voltage regulator circuit of Figure 9.21 has the following data:
30 <V, <35V; R, =10K, R, =2K
vV, =-20+0057 for -100mA <1 <0 (9.53)
Use MATLAB to

(a) plot the zener breakdown characteristics, (b) plot the loadline for V¢ =
30V and Vg =35V, (c) determine the output voltage when Vg =30V and
V =35V.

Solution

Using Thevenin Theorem, Figure 9.21 can be simplified into the form shown
in Figure 9.22.
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Figure 9.22 Equivalent Circuit of Voltage Regulator Circuit

ViR,

—_STL 9.54
"R, +R ©-54)

and

R, =R, R, (9.55)

Since R, =10K, Rg = 2K, R, = (10)(2K)/ 12K =1.67KQ
when V =30V, V. =(30)(10)/12 =25V
when Vi =35V, V,=(35)(10)/12 = 29.17V
The loadline equation is
Ve, =R, I+V, (9.56)
Equations (9.53) and (9.56) are two linear equations solving for /, so we get
V, =V, =R,1 =20 +0.05]

_ (I +20)

= 9.57
R, +005 ©-37



From Equations (9.56) and (9.57), the output voltage (which is also zener volt-
age) is

vy —rgey F0it20)
z —Vp T 8pl =V ™ R. +005 (9.58)
r 0.

MATLAB program

diary ex9_8.dat

% Zener diode voltage regulator

vsl =-30; vs2 =-35; rl =10e3; rs = 2¢3;
1=-50e-3: 5¢-3 :0;

vz =-20 + 0.05%i;

m = length(i);

i(m+1) = 0; vz(m+1) = -10;

i(m+2) = 0; vz(m+2) = 0;

% loadlines

vtl = vsl*rl/(rl+rs);

vt2 = vs2*rl/(rl+rs);

rt = rl*rs/(rl+rs);

11 = vt1/20;

12 = vt2/20;

vl =vtl:abs(11):0;

il = (vtl - vl)/it;

v2 =vt2:abs(12):0;

12 = (V2 - v2)/it;

% plots of Zener characteristics, loadlines
plot(vz,i,'w',v1,il,'w',v2,i2,'W")
axis([-30,0,-0.03,0.005])

title("Zener Voltage Regulator Circuit')
xlabel('Voltage (V)")

ylabel('Current (A)")
text(-19.5,-0.025,'Zener Diode Curve')
text(-18.6,-0.016, "Loadline (35 V Source)")
text(-14.7,-0.005,'Loadline (30 V Source)')
% output voltage when vs = -30v

ipl = (vtl +20)/(rt + 0.05)

vpl = vtl - rt*(vt1+20)/(rt + 0.05)

% output voltage when vs = -35v

ip2 = (vt2 + 20)/(rt + 0.05)

vp2 = vt2 - rt*(vt2+20)/(rt + 0.05)
diary

The results obtained are
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ipl =

-0.0030
vpl =

-20.0001
ip2 =

-0.0055
vp2 =

-20.0003

When the source voltage is 30 V, the output voltage is 20.0001 V.
In addition, when the source voltage is 35 V, the output voltage is 20.0003 V.

The zener breakdown characteristics and the loadlines are shown in Figure
9.23.

Zener Voltage Regulator Circuit

0+ \
-0.005} \ Loadline (30 V Source) -
< .01}
E=
g
o -0.015; Loadline (35 V Source)
-0.02r .
-0.025+ Zener Diode Curve 7
-0.03 ' ' : :
=30 -25 =20 -15 -10 -5 0

VYoltage (V)

Figure 9.23 Zener Characteristics and Loadlines
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EXERCISES

Use the iteration technique to find the voltage V', and the [,  of

Figure P9.1. Assume that T=25°C, n = 1.5, Is =10"°A. Stop current the

v, -V, <10” v.
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9.2

9.3

4 kilohms 5.6 kilohms

AA%AY AA%AY

6 kilohms §
I i

AN

Figure P9.1 A Diode Circuit

A zener diode has the following I-V characteristics

Reverse Voltage (V) | Reverse Current (A)
2 -1.0e-10

-4 -1.0e-10

-6 -1.0e-8

-8 -1.0e-5

-8.5 -2.0e-5

-8.7 -15.0e-3

-8.9 -43.5 e-3

(a) Plot the reverse characteristics of the diode.
breakdown voltage of the diode? (c ) Determine the dynamic resis-

tance of the diode in its breakdown region.

A forward-biased diode has the following corresponding voltage and

current.

(a) Plot the static I-V characteristics.

(b) Determine the diode parameters [/ and 7.

(b) What is the
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(c) Calculate the dynamic resistance of the diode at Vi =0.5 V.

Forward Voltage, V Forward Current, A
0.2 7.54e-7
0.3 6.55e-6
0.4 5.69e-5
0.5 4.94e-4
0.6 4.29¢-3
0.7 3.73e-2

9.4 For Figure P9.4,

10k Q 5kQ

20VC> 10kQ 10kQ 15kQ

Figure P9.4 Diode Circuit

(a) Use iteration to find the current through the diode. The iteration

can be stopped when ‘Idn - Idn_l‘ <107 A

(b) How many iterations were performed before the required result
was obtained? Assume a temperature of 25 °C, emission coef-

ficient, 7, of 1.5, and the reverse saturation current, / Rt 107
A.



9.5 For a full-wave rectifier circuit with smoothing capacitor shown in  Fig-
ure 9.17, if v () =100sin(12072) V, R = 50KQ, C=250pF, using
MATLAB

(a) Plot the input and output voltages when the capacitor is discon-
nected from the load resistance R.

(b) When the capacitor is connected across load resistance R, de-
termine the conduction time of the diode.

(c) Whatis the diode conduction time?

9.6 For the voltage regulator circuit shown in Figure 9.21, assume that 50 <
Ve <60V, R, =50K, R =5K, V= -40+0.01 1. Use MATLAB
to

(a) Plot the zener diode breakdown characteristics.

(b) Plot the loadline for V¢ =50 V and Vg = 60V.

(c) Determine the output voltage and the current flowing through the
source resistance Rg when V¢ =50V and Vg =60V.

9.7 For the zener voltage regulator shown in Figure 9.21, If V¢ =35V, R
=1KQ, V, = -25+0.02/ and 5K < R, <50K, use MATLAB to

(a) Plot the zener breakdown characteristics

(b) Plot the loadline when R, =5Kand R, =50K.
(c) Determine the output voltage when R, = 5KQ and R, = 50KQ.

(d) What is the power dissipation of the diode when R, =50KQ?
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CHAPTER TEN

SEMICONDUCTOR PHYSICS

In this chapter, a brief description of the basic concepts governing the flow of
current in a pn junction are discussed. Both intrinsic and extrinsic semicon-
ductors are discussed. The characteristics of depletion and diffusion capaci-
tance are explored through the use of example problems solved with
MATLAB. The effect of doping concentration on the breakdown voltage of
pn junctions is examined.

10.1 INTRINSIC SEMICONDUCTORS

10.1.1 Energy bands

According to the planetary model of an isolated atom, the nucleus that con-
tains protons and neutrons constitutes most of the mass of the atom. Electrons
surround the nucleus in specific orbits. The electrons are negatively charged
and the nucleus is positively charged. If an electron absorbs energy (in the
form of a photon), it moves to orbits further from the nucleus. An electron
transition from a higher energy orbit to a lower energy orbit emits a photon for
a direct band gap semiconductor.

The energy levels of the outer electrons form energy bands. In insulators, the
lower energy band (valence band) is completely filled and the next energy
band (conduction band) is completely empty. The valence and conduction
bands are separated by a forbidden energy gap.

conduction band conduction band conduction band

0.66 eV gap 5.5eV gap

valence band

1.21 eV gap

valence band valence band

energy of electrons
energy of electrons
energy of electrons

Figure 10.1 Energy Level Diagram of (a) Silicon, (b) Germanium,
and (c ) Insulator (Carbon)
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In conductors, the valence band partially overlaps the conduction band with no
forbidden energy gap between the valence and conduction bands. In semicon-
ductors the forbidden gap is less than 1.5¢V. Some semiconductor materials
are silicon (Si), germanium (Ge), and gallium arsenide (GaAs). Figure 10.1
shows the energy level diagram of silicon, germanium and insulator (carbon).

10.1.2 Mobile carriers

Silicon is the most commonly used semiconductor material in the integrated
circuit industry. Silicon has four valence electrons and its atoms are bound to-
gether by covalent bonds. At absolute zero temperature the valence band is
completely filled with electrons and no current flow can take place. As the
temperature of a silicon crystal is raised, there is increased probability of
breaking covalent bonds and freeing electrons. The vacancies left by the freed
electrons are holes. The process of creating free electron-hole pairs is called
ionization. The free electrons move in the conduction band. The average
number of carriers (mobile electrons or holes) that exist in an intrinsic semi-
conductor material may be found from the mass-action law:

n, = AT 75/ (10.1)
where
T is the absolute temperature in °K
k is Boltzmann’s constant (k =1.38 x 107 J/K or 8.62x107
eV/K)
E, is the width of the forbidden gap ineV. E, is1.21 and
1.1eV for Si at 0°K and 300°K, respectively. It is given as
Eg =E -FE, (10.2)
A is a constant dependent on a given material and it is given as
2 m, m,
A =—Q2mnk)* (——)*" (10.3)
h m, m,
where
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h is Planck’s constant (h=6.62x 107" Js or4.14x 10"° eV s).
m, 1s the rest mass of an electron
m,* is the effective mass of an electron in a material

my,* is effective mass of a hole in a material

The mobile carrier concentrations are dependent on the width of the energy
gap, E < measured with respect to the thermal energy k7. For small values
of T(kT<< E < ), n, is small implying, there are less mobile carriers.

For silicon, the equilibrium intrinsic concentration at room temperature is
n. =152x 10" electrons/cm’ (10.4)

Of the two carriers that we find in semiconductors, the electrons have a higher
mobility than holes. For example, intrinsic silicon at 300°K has electron
mobility of 1350 cm? / volt-sec and hole mobility of 480 cm?®/ volt-sec. The
conductivity of an intrinsic semiconductor is given by

o, =q(n,l, +p;H,) (10.5)
where

q is the electronic charge (1.6 x 107 C)

n, is the electron concentration

p; is the hole concentration. p, =n, for the intrinsic

semiconductor
u, electron mobility in the semiconductor material
M, hole mobility in the semiconductor material.

Since electron mobility is about three times that of hole mobility in silicon, the
electron current is considerably more than the hole current. The following ex-
ample illustrates the dependence of electron concentration on temperature.
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Example 10.1

Given that at 7= 300 °K, the electron concentration in silicon is 1.52 x 10"
electrons /cm® and E ¢ = 1.1 eV at 300 °K.

(a) Find the constant A of Equation (10.1).
(b) Use MATLAB to plot the electron concentration versus temperature.

Solution

From Equation (10.1), we have

152x10" = A(300) 15 e[—1.1/300*8.62*10’5)]

We use MATLAB to solve for 4. The width of energy gap with temperature
is given as [1].

O 7 O
_ _ 4
E, (T)=117-437x10 Bmﬁ (10.6)

Using Equations (10.1) and (10.6), we can calculate the electron concentration
at various temperatures.

MATLAB Script

%

% Calculation of the constant A
diary ex10_1.dat

k= 8.62¢-5;

na=1.52e10; ta=300;

ega=1.1;

ka = -ega/(k*ta);

t32a =ta."1.5;

A =na/(t32a*exp(ka));
fprintf(‘constant A is %10.5¢ \n', A)

% Electron Concentration vs. temperature

fori=1:10
t(i) =273 + 10*(i-1);



eg(i) = 1.17 - 4.37e-4*(t(1)*t(1))/(t(i) + 636);
t32(1) = t(i)."1.5;
ni(i) = A*t32(1)*exp(-eg(i)/(k*t(1)));
end
semilogy(t,ni)
title('Electron Concentration vs. Temperature')
xlabel('Temperature, K')
ylabel('Electron Concentration, cm-3")

Result for part (a)
constant A is 8.70225e+024
Figure 10.2 shows the plot of the electron concentration versus temperature.

Electron Concentration versus Temperature
10 ; . . . ;

Electron Concentration, cm-3
S

260 280 300 320 340 360 380
Temperature, K

Figure 10.2 Electron Concentration versus Temperature
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10.2 EXTRINSIC SEMICONDUCTOR

10.2.1 Electron and hole concentrations

Extrinsic semiconductors are formed by adding specific amounts of impurity
atoms to the silicon crystal. An n-type semiconductor is formed by doping the
silicon crystal with elements of group V of the periodic table (antimony, arse-
nic, and phosphorus). The impurity atom is called a donor. The majority car-
riers are electrons and the minority carriers are holes. A p-type semiconductor
is formed by doping the silicon crystal with elements of group III of the peri-
odic table (aluminum, boron, gallium, and indium). The impurity atoms are
called acceptor atoms. The majority carriers are holes and minority carriers
are electrons.

In a semiconductor material (intrinsic or extrinsic), the law of mass action
states that

pn = constant (10.7)
where

p is the hole concentration

n is the electron concentration.

For intrinsic semiconductors,
p=n=n, (10.8)

and Equation (10.5) becomes

pn=n’ (10.9)

and 7, is given by Equation (10.1).
The law of mass action enables us to calculate the majority and minority car-

rier density in an extrinsic semiconductor material. The charge neutrality
condition of a semiconductor implies that

ptN,=n+N, (10.10)
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where

N,  is the donor concentration
N, s the acceptor concentration
p is the hole concentration

n is the electron concentration.

In an n-type semiconductor, the donor concentration is greater than the intrin-
sic electron concentration, i.e., N is typically 10" cm® and n, = 1.5 x

10" cm™ in Si at room temperature. Thus, the majority and minority concen-
trations are given by

n, ON, (10.11)
n2

0— 10.12

POy (10.12)

In a p-type semiconductor, the acceptor concentration N , is greater than the
intrinsic hole concentration ~p, = n;. Thus, the majority and minority con-

centrations are given by

p, ON, (10.13)
2
i (10.14)
n NA .

The following example gives the minority carrier as a function of doping con-
centration.

Example 10.2

For an n-type semiconductor at 300°K, if the doping concentration is varied
from 10" to 10" atoms/cm’, determine the minority carriers in the doped
semiconductors.

Solution

From Equation (10.11) and (10.12),



Electron concentration= N ) and

2
n

. i
Hole concentration = ——
D

where

n,=152x 10 electrons/cm®

The MATLAB program is as follows:

% hole concentration in a n-type semiconductor
nd = logspace(13,18);

n =nd;

ni=1.52¢10;

ni_sq = ni*ni;

p =ni_sq./nd;

semilogx(nd,p,'b")

title("Hole concentration')

xlabel('Doping concentration, cm-3')
ylabel('Hole concentration, cm-3")

Figure 10.3 shows the hole concentration versus doping.

w0’ Haole concentration
25 T T T T

Hole concentration, cm-3

I III1015 ”.{516 " 1D1? — I”1I;:|13
Doping concentration, cm-3

Figure 10.3 Hole Concentration in N-type Semiconductor (Si)
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10.2.2 Fermi level

The Fermi level, E ., is a chemical energy of a material. It is used to describe

the energy level of the electronic state at which an electron has the probability
of 0.5 occupying that state. It is given as

1 4 m,
E, = E(EC +E,) _EKTIH(_m;) (10.15)
where

E . = energy in the conduction band
E, = energy in the valence band
and k T, m,* and m,* were defined in Section 10.1.

In an intrinsic semiconductor (Siand Ge) m,* and m,* are of the same order
of magnitude and typically, £, >> k7. Equation (10.15) simplifies to

1
E, =E O(Ec+ E)) (10.16)

Equation (10.16) shows that the Fermi energy occurs near the center of the en-
ergy gap in an intrinsic semiconductor. In addition, the Fermi energy can be
thought of as the average energy of mobile carriers in a semiconductor mate-
rial.

In an n-type semiconductor, there is a shift of the Fermi level towards the edge
of the conduction band. The upward shift is dependent on how much the
doped electron density has exceeded the intrinsic value. The relevant equation
is

Ep-E)/KT
n :nie[( roE )] (10.17)
where
n is the total electron carrier density
n, is the intrinsic electron carrier density
E, is the doped Fermi level
E is the intrinsic Fermi level.
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In the case of a p-type semiconductor, there is a downward shift in the Fermi
level. The total hole density will be given by

p=n

e[(Ei—EF)/kT]

(10.18)

Figure 10.4 shows the energy band diagram of intrinsic and extrinsic semicon-

ductors.

(a)

= Ec Ec
EF
EI = EF ************* EI 777777777777 E|
EF
E\/ EV EV
(b) (c)

Figure 10.4 Energy-band Diagram of (a) Intrinsic, (b) N-type, and

10.2.3

(c) P-type Semiconductors.

Current density and mobility

Two mechanisms account for the movement of carriers in a semiconductor ma-
terial: drift and diffusion. Drift current is caused by the application of an elec-
tric field, whereas diffusion current is obtained when there is a net flow of car-
riers from a region of high concentration to a region of low concentration. The
total drift current density in an extrinsic semiconductor material is

J =q(ny, + pu,)E

where

N

TRET S S

S|

BN
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(10.19)

is current density
is mobile electron density
is hole density,

is mobility of an electron
is mobility of a hole

is the electron charge
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E is the electric field.

The total conductivity is
0 =q(ny, +pu,)E (10.20)

Assuming that there is a diffusion of holes from an area of high concentration
to that of low concentration, then the current density of holes in the x-
direction is

dp ,
J,==qD, 5 Alcm (10.21)

where

q is the electronic charge
D B is the hole diffusion constant

p is the hole concentration.

Equation (10.21) also assumes that, although the hole concentration varies
along the x-direction, it is constant in the y and z-directions. Similarly, the

electron current density, J, , for diffusion of electrons is

dn

J,=qD, Alem’ (10.22)
dx
where
D, is the electron diffusion constant
n is the electron concentration.

For silicon, D[7 =13 cm’/s,and D, = 200 cm’*s . The diffusion and mo-

bility constants are related, under steady-state conditions, by the Einstein rela-
tion

D

n

H,

D, kT
=L =-— (10.23)

The following two examples show the effects of doping concentration on mo-
bility and resistivity.
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Example 10.3

From measured data, an empirical relationship between electron ( U, ) and hole

(M, ) mobilities versus doping concentration at 300°K is given as [2]

51x10" + 92N
3.75x10" + N}

H,(N,) = (10.24)

Ny = 29x10" +47. 7N}
l"lpn( A) - 5‘86x1012 + N276

(10.25)

where

N, and N, are donor and acceptor concentration per cm’,
respectively.

Plot the t4, (N, ) and p, (N , ) for the doping concentrations from 10" to

10%° ¢m? .

Solution
MATLAB Script

% nc - is doping concentration

%

nc = logspace(14,20);

un = (5.1el8 + 92*nc.”0.91)./(3.75e15 + nc.”0.91);
up = (2.90e15 + 47.7*nc.”0.76)./(5.86e12 + nc.”0.76);
semilogx(nc,un,'w',nc,up,'w")
text(8.0¢16,1000,'Electron Mobility")
text(5.0¢14,560,'Hole Mobility")

title('Mobility versus Doping')

xlabel('Doping Concentration in cm-3")
ylabel('Bulk Mobility (cm2/v.s)")

Figure 10.5 shows the plot of mobility versus doping concentration.
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Mobility versus Doping

1400

1200+

—_
o
o
o

Electron Mobility

800+

800 ote Mobility

Bulk Mobility (cm2/v.s)

400+

200t

10" 10" 10" 10

Doping Concentration in cm-3

20

Figure 10.5 Mobility versus Doping Concentration

Example 10.4

At the temperature of 300°K, the resistivity of silicon doped by phosphorus is
given as [ 3]

3.75x10° + N}

= 10.26
P = 147510 N +815x107' N, (1020
A similar relation for silicon doped with boron is given as [ 4]
586x10'2 + N7
P, (10.27)

 763x10" N +464%107' N,

where



N, and N , are donor and acceptor concentrations, respectively.

Use MATLARB to plot the resistivity versus doping concentration (em™).

Solution
MATLAB Script

% nc is doping concentration
% rn - resistivity of n-type
% rp - resistivity of p-type

nc = logspace(14,20);
m=(3.75¢15 + nc.”0.91)./(1.47e-17*nc."1.91 + 8.15¢-1*nc);
rp = (5.86e12 + nc.”0.76)./(7.63e-18*nc.1.76 + 4.64e-4*nc);

semilogx(nc,rn,'W',nc,rp,'w")
axis([1.0e14, 1.0e17,0,140])
title('Resistivity versus Doping')
ylabel('Resistivity (ohm-cm)')
xlabel('Doping Concentration cm-3')
text(1.1e14,12,'N-type")
text(3.0e14,50,'P-type")

Figure 10.6 shows the resistivity of N- and P-type silicon.
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Resistivity versus Doping
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Figure 10.6 Resistivity versus Doping Concentration

10.3 PN JUNCTION: CONTACT POTENTIAL, JUNCTION
CURRENT

10.3.1 Contact potential

An ideal pn junction is obtained when a uniformly doped p-type material
abruptly changes to n-type material. This is shown in Figure 10.7.
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P+ N

Figure 10.7 Ideal pn Junction (a) Structure, (b) Concentration of
Donors ( N, ), and acceptor ( IV , ) impurities.

Practical pn junctions are formed by diffusing into an n-type semiconductor a
p-type impurity atom, or vice versa. Because the p-type semiconductor has
many free holes and the n-type semiconductor has many free electrons, there is
a strong tendency for the holes to diffuse from the p-type to the n-type semi-
conductors. Similarly, electrons diffuse from the n-type to the p-type material.
When holes cross the junction into the n-type material, they recombine with the
free electrons in the n-type. Similarly, when electrons cross the junction into
the p-type region, they recombine with free holes. In the junction a transition
region or depletion region is created.

In the depletion region, the free holes and electrons are many magnitudes
lower than holes in p-type material and electrons in the n-type material. As
electrons and holes recombine in the transition region, the region near the junc-
tion within the n-type semiconductor is left with a net positive charge. The re-
gion near the junction within the p-type material will be left with a net negative
charge. This is illustrated in Figure 10.8.

Because of the positive and negative fixed ions at the transition region, an elec-
tric field is established across the junction. The electric field creates a poten-
tial difference across the junction, the potential barrier. The latter is also
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called diffusion potential or contact potential, Vc . The potential barrier pre-

vents the flow of majority carriers across the junction under equilibrium condi-
tions.

++

Depletion Region

Ee
Ec
Ep - ,
“Ein
Ep
E

Figure 10.8 pn Junction (a) Depletion region with Positive and
Negative Ions (b) Energy Band Diagram near a pn
Junction.

The contact potential, V., may be obtained from the relations

Ve
n - p
L (10.28)
n, b,
or
kT
—ln(—) (10.29)
q n
But, noting th ON 0L . ON, . p, O
ut, noting that  p , nh - ., n, » P, U,
g ! " N, ° N,
Equation (10.29) becomes
k. N,N,
Ve = =—In(——— ) (10.30)

q n;



The contact potential can also be obtained from the band-bending diagram of
the pn junction shown in Figure 10.8. That is, from Figure 10.8

Ein - Eip
Ve=——"7 (10.31)
q
or
Ve = —(qofn + %,) (10.32)
where
@, and @, are the electron and hole Fermi potentials,
respectively. They are given as
E,-FE kT UON, 0O
@y = =—InG—=20 (10.33)
q g Un U
and
E,-E, kT ON,O
@p=—""=—"InH—1 (10.34)
q g Un U
Using Equations (10.31) to (10.34), we have
kT ON,N, O
Ve =—Ihb——0 (10.35)

nu—-
g U n U

It should be noted that Equations (10.30) and (10.35) are identical. Typically,
V. is from 0.5 to 0.8 V for the silicon pn junction. For germanium, V. is ap-
proximately 0.1 to 0.2, and that for gallium arsenide is 1.5V.

When a positive voltage Vs is applied to the p-side of the junction and n-side

is grounded, holes are pushed from the p-type material into the transition re-
gion. In addition, electrons are attracted to transition region. The depletion
region decreases, and the effective contact potential is reduced. This allows
majority carriers to flow through the depletion region. Equation (10.28)
modifies to

y(Ve-Vs)0O p
Moo B B

n, Py

(10.36)
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When a negative voltage V' is applied to the p-side of a junction and the n-

side is grounded, the applied voltage adds directly to the contact potential.
The depletion region increases and it become more difficult for the majority
carriers to flow across the junction. The current flow is mainly due to the flow
of minority carriers. Equation (10.28) modifies to

n (Ve+Vg)O p
Tz B B2 (10.37)

np pn

Figure 10.9 shows the potential across the diode when a pn junction is
forward-biased and reversed-biased.

Figure 10.9 PN Junction (a) with Depletion Layer and Source Con-
nection (b) Contact Potential with No Source Voltage (V¢ =0) (c)

Junction Potential for Forward-biased pn Junction (Vg > 0) and (d)

Junction Potential for Reversed-biased pn Junction (V <0)



The following example illustrates the effect of source voltage on the junction
potential.

Example 10.5

For a Silicon pn junction with N, =10 em™ and N, = 10" cm” and

with 77 = 1.04 x 10* cm® at T= 300 °K,
(a) Calculate the contact potential.

(b) Plot the junction potential when the source voltage VS of Figure
10.9 increases from -1.0to 0.7 V.

Solution
MATLAB Script

diary ex10_5.dat
% Junction potential versus source voltage
% using equation(10.36) contact potential is

t=300;
na=1.0el7;
nd = 1.0e14;
nisq = 1.04e20;
q=1.602¢-19;
k=1.38e-23;

% calculate contact potential
ve = (k*t/q)*(log(na*nd/nisq))
vs =-1.0:0.1:0.7;

jet_pot =vc - vs;

% plot curve

plot(vs,jct_pot)

title('Junction potential vs. source voltage')
xlabel('Source voltage, V')
ylabel('Junction potential, V')

diary
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(a) The contact potential is

ve =
0.6535

(b) Figure 10.10 shows the graph of the junction potential versus the source

voltage.

Junction potential vs. source valtage
18 T T T T T T T T

1.6
1.4
1.2

1
0.3
0.6

Junction potential v

0.4

0.z

1]

-1 £8 06 04 02 0 0.2 0.4 k& 0.8
Source voltage &

0.2 : : :

Figure 10.10 Junction Potential versus Source Voltage.

10.3.2 Junction current

The pn junction current is given as

Blirat

U
I=1,2""-10 (10.38)
8 =

where
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VS is the voltage across the pn junction [see Figure 10.9 (a)]

q is the electronic charge

T is the absolute temperature

k is Boltzmann’s constant

[ is reverse saturation current. It is given as

D,p, Dn
I =gqA(——+—F— (10.39)
L » L,
where
A is the diode cross-sectional area
L o L, are the hole and electron diffusion lengths
p,-n, are the equilibrium minority carrier concentrations
D s D, are the hole and electron diffusion coefficients,
respectively.
2 2
Si 0 and 7. O~ Equation (10.39) becomes
ince — an ——, Equa .
b, N, PN, q
U D D U
I :qA%L P4 %15 (10.40)
pN D Ln N A

The diffusion coefficient and diffusion length are related by the expression

L,=/D,T, (10.41)

and

L =JDT1 (10.42)

n n-n

where

r,, T, are the hole minority and electron minority carrier lifetime,

respectively.
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Equation (10.38) is the diode equation. It is applicable for forward-biased
(Vg >0) and reversed-biased (V5 <0) pn junctions.

Using Equations (10.1) and (10.39), the reverse saturation current can
be rewritten as

I, = le3e['Eg“"T)] (10.43)

where k| is a proportionality constant

_E -E,
d]—5=3k1Tze kr +k1T3 de kr
dT kT
Thus
1dly, 3 1E, 3 1V,
—_— =t ——— = +—— (10.44)
I¢dT T Tk r TV,
where
kT L,
V,=— and V,=—"
q q
For silicon at room temperature,
V
—£ =444,
Vi
Thus
di V, dT dT
—=3+—)—=474— (10.45)
dT vV, T T

At room temperature (300° K), the saturation current approximately doubles
every 5° C [5].  The following example shows how [/ g is affected by tem-
perature.
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Example 10.6

A silicon diode has Iy = 107" A at 25° C and assuming [ increases by

15% per °C rise in temperature, find and plot the value of /¢ from 25 °C to
125 °C.

Solution

From the information given above, the reverse saturation current can be ex-
pressed as

I, =107%(115)"

MATLAB is used to find /g at various temperatures.

MATLAB Script

% Saturation current
%

t=25:5:125;
is = 1.0e-15*(1.15)./(t-25);

plot(t,is)

title('Reverse Saturation Current vs. Temperature')
xlabel('Temperature, C')

ylabel('Current, A")

Figure 10.11 shows the effect of temperature on the reverse saturation current.
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_he Reverse Saturation Current vs. Temperature
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Figure 10.11 Reverse Saturation Current versus Temperature

10.4 DEPLETION AND DIFFUSION CAPACITANCES

10.4.1 Depletion capacitance

As mentioned previously, a pn junction is formed when a p-type material is
joined to an n-type region. During device fabrication, a p-n junction can be
formed using process such as ion-implantation diffusion or epitaxy. The dop-
ing profile at the junction can take several shapes. Two popular doping pro-
files are abrupt (step) junction and linearly graded junction.

In the abrupt junction, the doping of the depletion region on either side of the
metallurgical junction is a constant. This gives rise to constant charge densi-
ties on either side of the junction. This is shown in Figure 10.12.
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Figure 10.12 PN Junction with Abrupt Junction (a) Depletion
Region (b) Charge Density (c ) Electric Field and
(d) Potential Distribution

For charge equality,
gN W, =gN, W, (10.46)

it can be shown [6] that the depletion width in the p-type (/) and that of the

n-type material (W), ) can be given as

P

2eN, (V. -V
:\/ o 2V, (10.47)
gN (N + N )
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_JzeNA(VC—VS)

N (10.48)
gNp(Np + N )
where
& is the relative dielectric constant
(€ =12¢, forSi, and & = 8.85x 107> F/m)

N,  isdonor concentration

N,  isacceptor concentration

q is electronic charge

Vc is contact potential obtained from Equation (10.30)

Vs is source voltage.

If the doping density on one side of the metallurgical junction is greater than
that on the other side (i.e., N, >> N, or N, >> N, ), then the junction

properties are controlled entirely by the lightly doped side. This condition is
termed the one-sided step junction approximation. This is the practical model
for shallow junctions formed by a heavily doped diffusion into a lightly doped
region of opposite polarity [7].

In a linearly graded junction, the ionized doping charge density varies linearly
across the depletion region. The charge density passes through zero at the
metallurgical junction. Figure 10.13 shows the profile of the linearly graded
junction.
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Figure 10.13 PN Junction with Linearly Graded Junction
(a) Depletion Region (b) Charge Density
(c) Electric Field (d) Potential Distribution

For a linearly graded junction, the depletion width in the p-type and n-type ma-
terial, on either side of the metallurgical junction, can be shown to be

1

O2e(V,. - V)0
=1

W, =W, (10.49)
‘ L qa L
where
a is the slope of the graded junction impurity profile.
The contact potential is given as [6]
kT aW,
Ve = — In( ) (10.50)
q 2n,

The depletion capacitance, C i is due to the charge stored in the depletion re-

gion. Itis generally given as
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C = W,
where
W, =Wy +‘WP‘
A

For abrupt junction, the depletion capacitance is given as

C _A\/ &N N,
J 2(N, +N )V, V)

For linearly graded junction, the depletion capacitance is given as

C, =0436(ag) e AV ~V)

_ age’ v
C, 0436A[(V V)]

is cross-sectional area of the pn junction.

(10.51)

(10.52)

(10.53)

(10.54)

In general, we may express the depletion capacitance of a pn junction by

C Coo L <]
.= —Sms _
! B v f 3 2
0
O Ve
where
1
m= 5 for linearly graded junction and
1
m= E for step junction

(10.55)
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C jo = zero-biased junction capacitance. It can be obtained from

Equations (10.53) and (10.54) by setting Vs equal to zero.

Equations (10.53 to 10.55) are, strictly speaking, valid under the conditions of
reversed-biased Vg < 0. The equations can, however, be used when V <

0.2V. The positive voltage, V. , is the contact potential of the pn junction.

As the pn junction becomes more reversed biased (Vg <0), the depletion ca-

pacitance decreases. However, when the pn junction becomes slightly forward
biased, the capacitance increases rapidly. This is illustrated by the following
example.

Example 10.7

For a certain pn junction, with contact potential 0.065V, the junction capaci-
tance is 4.5 pF for V¢ = -10and C, is 6.5 pF for Vg =-2V.

(a) Find m and CjO of Equation (10.55).
(b) Use MATLARB to plot the depletion capacitance from -30V to 0.4V.

Solution

From Equation (10.55)

C S
J1 V
1—-Stym
[ - ]
c
o o S
iz V
_ 82 m
[1 - ]
c
therefore
C./l - D/c Vs, gl
C,z %/C Vs O



m= : (10.56)

and

|
0 (10.57)
O

MATLAB is used to find mand C jo- It is also used to plot the depletion ca-

pacitance.

MATLAB Script

% depletion capacitance
%

cjl =4.5e-12; vsl =-10;
cj2 =6.5e-12; vs2 = -2;
ve = 0.65;

num = ¢jl/cj2;

den = (vc-vs2)/(ve-vsl);

m = log10(num)/log10(den);
cjO =cj1*(1 - (vsl/vc)) m;
vs =-30:0.2:0.4;

k = length(vs);

fori=l:k

cj(i) = cj0/(1-(vs(i)/ve)) m;
end

plot(vs,cj,'w")
xlabel('Voltage,V")
ylabel('Capacitance,F')
title('Depletion Capacitance vs. Voltage")
axis([-30,2,1e-12,14e-12])

(a) The values of m, C; are

m =

0.02644
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cj0 =
9.4246e-012

(b) Figure 10.14 shows the depletion capacitance versus the voltage across the
junction.

x 10" Depletion Capacitance vs. Voltage
14 . ' ' ' ' '

— —
o ]

o]

Capacitance,F

30 25 20 15 10 5 0

Voltage,V

Figure 10.14 Depletion Capacitance of a pn Junction

10.4.2 Diffusion capacitance

When a pn junction is forward biased, holes are injected from the p-side of the
metallurgical junction into the n-type material. The holes are momentarily
stored in the n-type material before they recombine with the majority carriers
(electrons) in the n-type material. Similarly, electrons are injected into and
temporarily stored in the p-type material. The electrons then recombine with
the majority carriers (holes) in the p-type material. The diffusion capacitance,
C, , is due to the buildup of minority carriers charge around the metallurgical
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junction as the result of forward biasing the pn junction. Changing the forward
current or forward voltage, AV, will result in the change in the value of the
stored charge AQ, the diffusion capacitance, C,, can be found from the gen-

eral expression

Y

C=ay

(10.58)

It turns out that the diffusion capacitance is proportional to the forward-biased
current. That is

C,=K,I,, (10.59)

where
K, is constant at a given temperature

I, is forward-biased diode current.

The diffusion capacitance is usually larger than the depletion capacitance [1,
6]. Typical values of C, ranges from 80 to 1000 pF.

A small signal model of the diode is shown in Figure 10.15.

[e
]

Q)

.

Figure 10.15 Small-signal Model of a Forward-biased pn Junction
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In Figure 10.15, C, and C ; are the diffusion and depletion capacitance, re-

spectively. R is the semiconductor bulk and contact resistance. The dy-

namic resistance, ¥, , of the diode is given as

nkT (10.60)
r, = .
¢ ql e

where
n is constant
k is Boltzmann’s constant
T is temperature in degree Kelvin
q is electronic charge.

When a pn junction is reversed biased, C, = 0. The model of the diode is
shown in Figure 10.16.

CJ'

€ R,
———AA—

AAA

Rd

Figure 10.16 Model of a Reverse-biased pn Junction

In Figure 10.16, C j is the depletion capacitance. The diffusion capacitance is

zero. The resistance R, is reverse resistance of the pn junction (normally in
the mega-ohms range).

Example 10.8

A certain diode has contact potential; V. = 0.55V, C o = diffusion capaci-

tance at zero biased is 8 pF; the diffusion capacitance at 1mA is 100 pF.
Use MATLAB to plot the diffusion and depletion capacitance for forward- bi-
ased voltages from 0.0 to 0.7 V. Assume that /= 10" A, n=2.0 and step-

junction profile.



Solution

Using Equations (10.38) and (10.59), we write the MATLAB program to ob-
tain the diffusion and depletion capacitance.

MATLAB Script

%

% Diffusion and depletion Capacitance

%

cdl = 100e-12; id1 = 1.0e-3; ¢jO = 8e-12; vc =0.55;
m=0.5;

is = 1.0e-14; nd = 2.0;
k=1.38e-23; q=1.6e-19; T = 300;
kd = cdl/idl;

vt =k*T/q;

v=0.0:0.05:0.55;

nv = length(v);

fori= 1:nv

id(i) = is*exp(v(i)/(nd*vt));
cd(i) = kd*id(i);

ra(i) = v(i)/vc;

¢j(i) = cj0/((1 - ra(i))."m);
end

subplot(121)

plot(v,cd)

title('Diffusion Cap.")

xlabel('Voltage, V'), ylabel('Capacitance, F')

subplot(122)

plot(v,cj)
title('Depletion Cap.")
xlabel('Voltage, V'), ylabel('Capacitance, F')

Figure 10.17 shows the depletion and diffusion capacitance of a forward-
biased pn junction.
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Figure 10.17 (a) Depletion and (b) Diffusion Capacitance

BREAKDOWN VOLTAGES OF PN JUNCTIONS

The electric field F is related to the charge density through the Poisson’s equa-

tion

where

dE(x) _ p(x)
= (10.61)
dx £&,
& is the semiconductor dielectric constant
& is the permittivity of free space, 8.86 * 107 F/cm

P(x) is the charge density.
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For an abrupt junction with charge density shown in Figure 10.12, the charge
density

p(x) = =N, W, <x <0
10.62
=gN, 0<x<W, ( )
The maximum electric field
N W, N, W,
‘max=q 27p o p7n (10.63)
gsg() 8.&‘80
Using Equation (10.47) or (10.48, Equation (10.63) becomes
2qN, N ,(V. -V,
‘ - :\/ gN,N, (V. =Vs) (10.64)
€& (N, +Np)

For a linearly graded junction, the charge density, O(x)is given as (see Figure
10.13)

w w
pP(x) = ax Y <Xx <? (10.65)

and the maximum electric field can be shown to be

a
\ e 1y (10.66)
8 €,
where
a is slope of charge density
w is width of depletion layer and
W — —
5" W, =Ww,

The width of the depletion region, W, can be obtained from Equation (10.49).

Equation (10.64) indicates that as the reverse voltage increases, the magnitude
of the electric field increases. The large electric field accelerates the carriers
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crossing the junction. At a critical field, £ the accelerated carriers in the

crit ?
depletion region have sufficient energy to create new electron-hole pairs as
they collide with other atoms. The secondary electrons can in turn create
more carriers in the depletion region. This is termed the avalanche breakdown
process. For silicon with an impurity concentration of 10'® cm?, the critical

electric field is about 2.0x10° V/cm.

In a highly doped pn junctions, where the impurity concentration is about 10"
cm™ | the critical electric field is about 10° V/em. This high electric field is
able to strip electrons away from the outer orbit of the silicon atoms, thus cre-
ating hole-electron pairs in the depletion region. This mechanism of break-
down is called zener breakdown. This breakdown mechanism does not involve
any multiplication effect. Normally, when the breakdown voltage is less than
6V, the mechanism is zener breakdown process. For breakdown voltages be-
yond 6V, the mechanism is generally an avalanche breakdown process.

For an abrupt junction, where one side is heavily doped, the electrical proper-
ties of the junction are determined by the lightly doped side. Experimentally,
the breakdown voltage of semiconductor step junction ( n'p or p'n ) as the
function of doping concentration in the lightly doped side is given as [7]

-0.75
ON, O
Vir = k%% (10.67)
where
k= 25V for Ge
= 60V for Si
and

N, is the doping concentration of lightly doped side.

The following example shows the effect of doping concentration on breakdown
voltage.
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Example 10.9

Use MATLAB to plot the breakdown voltage versus doping concentration for
a one-sided step junction for silicon and germanium, and using doping con-
centration from 10" to 10" ecm™.

Solution

Using Equation (10.67), we calculate the breakdown voltage for various dop-
ing concentration.

MATLAB Script

%

% Breakdown voltage
%

k1l =25;

k2 = 60;

nb = logspace(14,19);
n = length(nb);

fori=1:n

vbrl(i) = k1*(nb(i)/1.0e16)"(-0.75); % Ge breakdown voltage
vbr2(i) = k2*(nb(i)/1.0e16)"(-0.75); % Si breakdown voltage
end

semilogx(nb,vbrl,'w', nb,vbr2,'w")

xlabel('Impurity Concentration, cm-3")
ylabel('Breakdown Voltage, V')

title('Breakdown Voltage vs. Impurity Concentration')
axis([1.0e14,1.0e17,0,2000])

text(2.0e14,270,'Ge")

text(3.0e14,1000,'Si")

Figure 10.18 shows the plot of breakdown voltage of one-sided abrupt junc-
tion.
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Figure 10.18 Breakdown Voltage versus Impurity Concentration
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EXERCISES

In the case of silicon for temperature below 700 °K, the density of
intrinsic created carriers, 71;, can be approximated as [8]

07.02*10° O
3 - n
n, =387%10°7%¢ 0 T © (10.68)
(a) Use MATLAB to plot the intrinsic carrier concentration
versus (1000/7) where T is temperature in degrees Kelvin.
(b) Compare the above relation for intrinsic concentration with

that of Example 10.1. Plot the difference between of #,
for Equations (10.1) and (10.68).

Assuming that at 300 °K the mobile carrier concentrations of intrinsic
germanium and silicon semiconductor materials are 2.390*10" and

1.52%10' , respectively, use MATLAB to plot the £, — E, versus

donor concentration for Ge and Si. Assume donor concentrations
from 10" to 10"%.
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10.3

10.4

10.5

10.6

For power devices with breakdown voltages above 100V and
resistivities greater than 1 ohm-cm (n-type silicon) and 3 ohm-cm (p-
type silicon), the resistivity versus doping concentrations can be sim-
plified to

p, =4596*10"° N
p,, =1263*%10"° N}

(a) Use MATLAB to plot resistivity versus doping concentration
(from 10 to 10" cm™).
(b) Compare your results with those obtained in Example 10.4.

For Ge pn junction with N, =10"*cm”, N, =10" cm” and n,
at 300 °K is 2.39*10",

(a) Calculate the contact potential.
(b) Plot the junction potential for source voltages of -1.0V to 0.3V.

For the small signal model of the forward-biased pn junction, shown
in Figure 10.15, Rg =5Q, r, =10Q, C, =110 pFat I, of 1
mA. Use MATLAB to plot the equivalent input impedance (magni-
tude and phase) for frequencies from 10* to 10"’ Hz.

Empirically, the breakdown voltage of a linearly graded junction can
be approximated as [9]

where k& =18V for Ge or 40 V for Si.

Use MATLARB to plot the breakdown voltage vs. impurity gradient of
Ge and Si. Use impurity gradient values from 10" to 10,
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CHAPTER ELEVEN

OPERATIONAL AMPLIFIERS

The operational amplifier (Op Amp) is one of the versatile electronic circuits.
It can be used to perform the basic mathematical operations: addition, subtrac-
tion, multiplication, and division. They can also be used to do integration and
differentiation. There are several electronic circuits that use an op amp as an
integral element. Some of these circuits are amplifiers, filters, oscillators, and
flip-flops. In this chapter, the basic properties of op amps will be discussed.
The non-ideal characteristics of the op amp will be illustrated, whenever possi-
ble, with example problems solved using MATLAB.

11.1 PROPERTIES OF THE OP AMP

The op amp, from a signal point of view, is a three-terminal device: two inputs
and one output. Its symbol is shown in Figure 11.1. The inverting input is
designated by the ‘-’ sign and non-inverting input by the ‘+’ sign.

Figure 11.1 Op Amp Circuit Symbol

An ideal op amp has an equivalent circuit shown in Figure 11.2. It is a differ-
ence amplifier, with output equal to the amplified difference of the two inputs.

An ideal op amp has the following properties:

* infinite input resistance,

*  zero output resistance,

e zero offset voltage,

* infinite frequency response and

* infinite common-mode rejection ratio,
* infinite open-loop gain, A.
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Figure 11.2 Equivalent Circuit of an Ideal Op Amp

A practical op amp will have large but finite open-loop gain in the range from
10° to 10°. It also has a very large input resistance 10° to 10" ohms. The out-
put resistance might be in the range of 50 to 125 ohms. The offset voltage is
small but finite and the frequency response will deviate considerably from the
infinite frequency response. The common-mode rejection ratio is not infinite
but finite. Table 11.1 shows the properties of the general purpose 741 op
amp.

Table 11.1

Properties of 741 Op Amp
Property Value (Typical)
Open Loop Gain 2x10°
Input resistance 2.0M
Output resistance 75 Q
Offset voltage 1 mV
Input bias current 30 nA
Unity-gain bandwidth 1 MHz
Common-mode rejection ratio | 95 dB
Slew rate 0.7 V/uUV

Whenever there is a connection from the output of the op amp to the inverting
input as shown in Figure 11.3, we have a negative feedback connection



2
Z1
,— \
1 L, —» —
i +
(a)
ZZ
Z1
,— ' R
| —
(b)

Figure 11.3  Negative Feedback Connections for Op Amp
(a) Inverting (b) Non-inverting configurations

With negative feedback and finite output voltage, Figure 11.2 shows that
v, =4V, -1,) (1L1)

Since the open-loop gain is very large,

(v, -7) :%" 00 (11.2)
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Equation (11.2) implies that the two input voltages are also equal. This condi-
tion is termed the concept of the virtual short circuit. In addition, because of
the large input resistance of the op amp, the latter is assumed to take no cur-
rent for most calculations.

11.2 INVERTING CONFIGURATION

An op amp circuit connected in an inverted closed loop configuration is shown
in Figure 11.4.

ZZ
Zin
Z1
\
Vin : IA_, -
: + A
—
=

Figure 11.4 Inverting Configuration of an Op Amp

Using nodal analysis at node A, we have

I/a_I/in I/a_I/O
+ +

Z Z,

I, =0 (11.3)

From the concept of a virtual short circuit,

V.=V, =0 (11.4)
and because of the large input resistance, /;, = 0. Thus, Equation (11.3) sim-
plifies to

V Z

2 --= (11.5)

Viv Z,
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The minus sign implies that V,, and V), are out of phase by 180°. The input

impedance, Z,, is given as

Z,="=7 (11.6)

If Z, =R, and Z, = R,, we have an inverting amplifier shown in Figure
11.5.

R2
R1
Vin h
S B VO
[
Figure 11.5 Inverting Amplifier
The closed-loop gain of the amplifier is
v R
2 =-_2 (11.7)
Vin R,

and the input resistance is R,. Normally, R, > R, such that ‘Vo‘ > ‘VIN‘.

With the assumptions of very large open-loop gain and high input resistance,
the closed-loop gain of the inverting amplifier depends on the external com-
ponents R, R,, and is independent of the open-loop gain.

For Figure 114, if Z, =R, and Z, = PWatl obtain an integrator
Jw

circuit shown in Figure 11.6. The closed-loop gain of the integrator is
Vo 1
Vv JwCR,

(11.8)
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| |
C
R1
V. -
in —
I —L V,
I
Figure 11.6 Op Amp Inverting Integrator
In the time domain
V dv,
R%T’le and [ =-C— (11.9)
Since [, =1
1
V()= __RICJ;VIN(t)dT +7,(0) (11.10)

The above circuit is termed the Miller integrator. The integrating time con-
stant is CR,. It behaves as a lowpass filter, passing low frequencies and at-
tenuating high frequencies. However, at dc the capacitor becomes open cir-
cuited and there is no longer a negative feedback from the output to the input.
The output voltage then saturates. To provide finite closed-loop gain at dc, a

resistance R, is connected in parallel with the capacitor. The circuit is shown

in Figure 11.7. The resistance R, is chosen such that R, is greater than R.
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\ .
—

Figure 11.7 Miller Integrator with Finite Closed Loop Gain at DC

For Figure 11.4,if Z; = and Z, = R, we obtain a differentiator cir-
Jw
cuit shown in Figure 11.8. From Equation (11.5), the closed-loop gain of the

differentiator is

Vo .
—— = —jwCR (11.11)
Vi
R1
C &
Vi, It I -
¢ —V,
I
Figure 11.8 Op Amp Differentiator Circuit
In the time domain
4
I.=C d;N ,and V() = -1, R (11.12)

Since
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we have

(11.13)

Differentiator circuits will differentiate input signals. This implies that if an
input signal is rapidly changing, the output of the differentiator circuit will ap-
pear “ spike-like.”

The inverting configuration can be modified to produce a weighted summer.
This circuit is shown in Figure 11.9.

Figure 11.9 Weighted Summer Circuit

From Figure 11.9

I/I V2 Vn
L=, I, =2 .. , 1 = (11.14)
Rl 2 Rn
also
I, =1 +1,+...1, (11.15)
V,=~I,R, (11.16)

Substituting Equations (11.14) and (11.15) into Equation (11.16) we have
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V% 11.17
Vg (11.17)

The frequency response of Miller integrator, with finite closed-loop gain at dc,
is obtained in the following example.

Example 11.1

Vv
For Figure 11.7, (a) Derive the expression for the transfer function —0( jw).
(b) If C =1nF and R, = 2KQ, plot the magnitude response for R, equal to
(1) 100 KQ, (ii) 300KQ, and (iii) 500KQ.

Solution

Z :RH 1 __ & (11.18)

> 2lsC, 14sC,R, '

Z, =R, (11.19)
_R2

4 ( )-—R1 11.20

Via ’ _1+SC2R2 (120
_1

() Gk, 11.21

v s (11.21)

MATLAB Script

% Frequency response of lowpass circuit
c=1e-9;rl =2e3;

r2 =[100e3, 300e3, 500e3];

nl =-1/(c*rl); d1 = 1/(c*r2(1));

numl =[nl]; denl =[1 d1];

w = logspace(-2,6);

hl = freqs(numl,denl,w);

f=w/(2*pi);



d2 = 1/(c*r2(2)); den2 = [1 d2];

h2 = freqs(numl, den2, w);

d3 = 1/(c*r2(3)); den3 = [1 d3];

h3 = freqs(numl,den3,w);
semilogx(f,abs(hl),'w',f,abs(h2),'w',f,abs(h3),'w'
xlabel('Frequency, Hz")
ylabel('Gain')
axis([1.0e-2,1.0¢6,0,260])
text(5.0e-2,35,'R2 = 100 Kilohms')
text(5.0e-2,135,'R2 = 300 Kilohms")
text(5.0e-2,235,'R2 = 500 Kilohms")
title('Integrator Response")

Figure 11.10 shows the frequency response of Figure 11.7.

Integrator Response

250 ' | | ]
R2 = 500 Kilohms
200} 1
150 1
£ R2 = 300 Kilohms
®
100} 1
50 1
R2 = 100 Kilohms
0 -2 I ] I 2 I 4 (5]
10 10 10 10 10

Frequency, Hz

Figure 11.10 Frequency Response of Miller Integrator with Finite
Closed-Loop Gain at DC
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11.3

NON-INVERTING CONFIGURATION
11.11.

An op amp connected in a non-inverting configuration is shown in Figure

Z,

— on

/— VO
in

Figure 11.11 Non-Inverting Configuration
Using nodal analysis at node A
Va

Z,

V. -V
+ a0 + ]I — 0
Z,
From the concept of a virtual short circuit,

(11.22)
VIN

=V

a
to

(11.23)
and because of the large input resistance (#; = 0), Equation (11.22) simplifies

(11.24)
The gain of the inverting amplifier is positive. The input impedance of the

amplifier Z,, approaches infinity, since the current that flows into the posi-
tive input of the op-amp is almost zero.
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If Z,= R, and Z, = R,, Figure 11.10 becomes a voltage follower with gain.
This is shown in Figure 11.11.

R2
R1
fM 1y
= o
Vin ’
Figure 11.12 Voltage Follower with Gain
The voltage gain is
v, O RO
—=1+—0 (11.25)
Vi U

The zero, poles and the frequency response of a non-inverting configuration
are obtained in Example 11.2.

Example 11.2

For the Figure 11.13 (a) Derive the transfer function. (b) Use MATLAB to
find the poles and zeros. ( ¢ ) Plot the magnitude and phase response, assume

that C, =0.1uF, C, =1000 0.1uF, R, =10KQ, and R, =10 Q.
R,

— MW ———

C,

I T Ly

V1
I

Figure 11.13 Non-inverting Configuration

Vin

+

R



Solution

Using voltage division

V. 1/sC,
L(s)= sG (11.26)
Vv R + I/SC1
From Equation (11.24)
Vo R,
—() =1+ 11.27
Using Equations (11.26 ) and (11.27), we have
Yo (s) ME 11.28
Vv Ol +sC R, O ( )
The above equation can be rewritten as
C,R Eb + ! %
v, 20 RO
(S) = (11.29)
Vn CRG+ -0
'O ¢RrO

The MATLAB program that can be used to find the poles, zero and plot the
frequency response is as follows:

diary ex11 2.dat

% Poles and zeros, frequency response of Figure 11.13
%

%

cl=1e-7;c2=1e-3;r1 =10e3; 12 = 10;

% poles and zeros
bl = c2*r2;

al =cl*rl;

num = [bl 1];
den={al 1];
disp('the zero is")
z = roots(num)
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disp('the poles are')
p = roots(den)

% the frequency response

w = logspace(-2,6);

h = fregs(num,den,w);

gain = 20*log10(abs(h));
f=w/(2*pi);

phase = angle(h)*180/pi;
subplot(211),semilogx(f,gain,'w");
xlabel('Frequency, Hz')
ylabel('Gain, dB')
axis([1.0e-2,1.0e6,0,22])
text(2.0e-2,15,'Magnitude Response')
subplot(212),semilogx(f,phase,'w")
xlabel('Frequency, Hz')
ylabel('Phase")
axis([1.0e-2,1.0e6,0,75])
text(2.0e-2,60,'Phase Response')

diary

The results are:

the zero is
7=
-100

the pole is
p=
-1000

The magnitude and phase plots are shown in Figure 11.14
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20} | | | ]
Q Magnitude Response
£10¢ |
Q
0 -2 I 0 I 2 I 4 a3
10 10 10 10 10
Frequency, Hz
Phase Response
@ 50- 1
2
o
0 2 i 2 4 B
10 10 10 10 10

Frequency, Hz

Figure 11.14 Frequency Response of Figure 11.13

114 EFFECT OF FINITE OPEN-LOOP GAIN

For the inverting amplifier shown in Figure 11.15, if we assume a finite open-
loop gain A, the output voltage V), can be expressed as

v, =4, -1,) (11.30)
Since V, =0,
;
V===
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n V2 ~ | Vo

- ? A(V,V,)

Figure 11.15 Inverter with Finite Open-loop Gain

Because the op amp has a very high input resistance, 7, =0, we have

]R, = ]m (11.31)
But
V.=V, V.-V, A4
]RI N L _ 0/ (1132)
R1 R1
Also
Vo =V, _IRZRZ (11.33)

Using Equations (11.30), (11.31) and (11.32), Equation (11.33) becomes

— VO Rz
v, = Yy —E(V,N +VO/A) (11.34)

Simplifying Equation (11.34), we get

Vo __ R, /R,

Vw  1+(1+R,/R)/4

(11.35)
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It should be noted that as the open-loop gain approaches infinity, the closed-
loop gain becomes

Vo o R
VIN RI

The above expression is identical to Equation (11.7). In addition, from
Equation (11.30) , the voltage ¥V, goes to zero as the open-loop gain goes to
infinity. Furthermore, to minimize the dependence of the closed-loop gain on
the value of the open-loop gain, 4, we should make

>u|>u

, U
+ E« A (11.36)

1

OO0

This is illustrated by the following example.

Example 11.3

In Figure 11.15, R, =500 Q, and R, = 50 KQ. Plot the closed-loop gain as
the open-loop gain increases from 10” to 10%.

Solution

% Effect of finite open-loop gain
%

a = logspace(2,8);

rl =500; r2 = 50e3; r21 = r2/rl;
g=1[k

n = length(a);

fori=l:n

g(i) = r21/(1+(1+r21)/a(i));

end

semilogx(a,g,'w")

xlabel('Open loop gain')
ylabel('Closed loop gain')
title('Effect of Finite Open Loop Gain')
axis([1.0e2,1.0e8,40,110])



Figure 11.16 shows the characteristics of the closed-loop gain as a function of
the open-loop gain.

Effect of Finite Open-loop Gain

100

90

80

70

Closed-loop gain

60

50

40 — '

10° 10 10° 10
Open-loop gain

Figure 11.16  Closed-Loop Gain versus Open-Loop Gain

For the voltage follower with gain shown in Figure 11.12, it can be shown that
the closed-loop gain of the amplifier with finite open-loop gain is

Vo _ (1+R2/R1)
Vw  1+(1+R,/R)/4

(11.37)

© 1999 CRC PressLLC



© 1999 CRC PressLLC

11.5 FREQUENCY RESPONSE OF OP AMPS

The simplified block diagram of the internal structure of the operational ampli-
fier is shown in Figure 11.17.

Y] N Voltage
! Difference amplifier (:tj;pl: v
er N N >
amplifier and level am I?fier o
Vv, > shifter P

Figure 11.17 Internal Structure of Operational Amplifier

Each of the individual sections of the operational amplifier contains a lowpass
RC section, with its corner (pole) frequency. Thus, an op amp will have an
open-loop gain with frequency that can be expressed as

Als) = Ao
(l +s/w,)(l +s/w2)(l +s/w3)

(11.38)

where
w, <wW, <w,

A, = gainatdc

For most operational amplifiers, W, is very small (approx. 207T radians /s)

and W, might be in the range of 2 to 6 mega-radians/s.

Example 11.4

The constituent parts of an operational amplifier have the following internal
characteristics: the pole of the difference amplifier is at 200 Hz and the gain is
- 500. The pole of the voltage amplifier and level shifter is 400 KHz and has a
gain of 360. The pole of the output stage is 800KHz and the gain is 0.92.
Sketch the magnitude response of the operational amplifier open-loop gain.
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Solution

The lowpass filter response can be expressed as

VO . Crstage
—(jw)=———+ (11.39)
Vi ( ) L+ jf / S »
or
VO Crstage
= 11.40
Vo (5) 1+s/w, (1140

The transfer function of the amplifier is given as

As) = =500 360 0.92 (11.41)
S) = .
(1+s/4007) (1 +s/870°) (1 +5/1.6 70°)
The above expression simplifies to
2.62x10*
= (11.42)

(s +400m)(s +8 710°)(s +16 710°)

MATLAB script

% Frequency response of op amp

% poles are

pl =400%pi; p2 = 8e5%pi; p3 = 1.6e6*pi,
p=I[pl p2 p3];

% zeros

z=[0];

const = 2.62¢21;

% convert to poles and zeros and
% find the frequency response
a3=1;

a2 =pl +p2 +p3;

al =pl*p2 + pl*p3 + p2*p3;

a0 = pl*p2*p3;

den =[a3 a2 al a0];

num = [const];

w = logspace(1,8);
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h = fregs(num,den,w);
f=w/(2*pi);
g db=20*logl0(abs(h));

% plot the magnitude response
semilogx(f,g_db)
title('"Magnitude response')
xlabel('Frequency, Hz')
ylabel('Gain, dB')

The frequency response of the operational amplifier is shown in Figure 11.18.

Magnitude response
150 T T T

100 q

Gain, dB

=0F 4

-100 - '
10° 10° 10 108 100
Frequency, Hz

Figure 11.18 Open-Loop Gain Characteristics of an Op Amp

For an internally compensated op amp, there is a capacitor included on the IC
chip. This causes the op amp to have a single pole lowpass response. The
process of making one pole dominant in the open-loop gain characteristics is
called frequency compensation, and the latter is done to ensure the stability of
the op amp. For an internally compensated op amp, the open-loop gain A(s)

can be written as
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AO

Als) =—%— (11.43)
(1 +s/ wb)
where
A, is dc open-loop gain
wy is break frequency.

For the 741 op amp, A4, = 10° and W, = 20 T radians/s. At physical fre-
quencies s = jw, Equation (11.43) becomes

A
A(jw)=7—2— (11.44)
(1 +J W/ Wb)
For frequencies W > W, , Equation (11.44) can be approximated by
A,w
Al jw) = =2 (11.45)
Jw

The unity gain bandwidth, w, (the frequency at which the gain goes to unity),
is given as

w, = A,w, (11.46)

For the inverting amplifier shown in Figure 11.5, if we substitute Equation
(11.43) into Equation (11.35), we get a closed-loop gain

R,/R
—2(5) = - /Ry (11.47)

RN vk )

In the case of non-inverting amplifier shown in Figure 11.12, if we substitute
Equation (11.43) into Equation (11.37), we get the closed-loop gain expression
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V 1+ R, /R
9 (s) = /R, (11.48)
VIN

1+(l +R2/RI)/AO +W /(1 +SR2/R1)

From Equations (11.47) and (11.48), it can be seen that the break frequency for
the inverting and non-inverting amplifiers is given by the expression

W,

= 11.49
TR R e

The following example illustrates the effect of the ratio—— on the frequency
1

response of op amp circuits.

Example 11.5

An op amp has an open-loop dc gain of 107, the unity gain bandwidth of

10 Hz. For an op amp connected in an inverting configuration (Figure
11.5), plot the magnitude response of the closed-loop gain.

RZ
if —= =100, 600, 1100
R,

Solution

Equation (11.47) can be written as

w,R,

R
R+
w, w

s+—+

t
4, (1+R%)
1

(11.50)

MATLAB script

% Inverter closed-loop gain versus frequency
w = logspace(-2,10); f=w/(2*pi);
r12 =100 600 11007;



© 1999 CRC PressLLC

Figure 1

Gain

a=[l; b=[]; num=[]; den=[]; h=[];
fori=1:3

a(i) = 2*pi*1.0e8*r12(1)/(1+r12(1));

b(i) = 2*pi*1.0e8*((1/(1+r12(i))) + 1.0e-7);
num = [a(i)];

den =[1 b(i)];

h(i,:) = freqs(num,den,w);

end
semilogx(f,abs(h(1,:)),'w',f,abs(h(2,:)),'w',f,abs(h(3,:)),'w")
title("'Op Amp Frequency Characteristics')
xlabel('Frequency, Hz')

ylabel('Gain')

axis([1.0e-2,1.0e10,0,12001])

text(1.5e-2, 150, 'Resistance ratio of 100")
text(1.5e-2, 650, Resistance ratio of 600")
text(1.50e-2, 1050, 'Resistance ratio of 1100")

1.19 shows the plots obtained from the MATLAB program.

Op Amp Frequency Characteristics

1200

Resistance ratio of 1100
1000}

800+

Resistance ratio of 600

600

400

200}
Resistance ratio of 100

10" 10° 10
Frequency, Hz

Figure 11.19 Frequency Response of an Op Amp Inverter with
Different Closed Loop Gain
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11.6 SLEW RATE AND FULL-POWER BANDWIDTH

Slew rate (SR) is a measure of the maximum possible rate of change of the out-
put voltage of an op amp. Mathematically, it is defined as

dv
SR = —2
dt

max

(11.51)

The slew rate is often specified on the op amp data sheets in V/us. Poor op
amps might have slew rates around 1V/us and good ones might have slew rates
up to 1000 V/us are available, but the good ones are relatively expensive.

Slew rate is important when an output signal must follow a large input signal
that is rapidly changing. If the slew rate is lower than the rate of change of the
input signal, then the output voltage will be distorted. The output voltage will
become triangular, and attenuated. However, if the slew rate is higher than the
rate of change of the input signal, no distortion occurs and input and output of
the op amp circuit will have similar wave shapes.

As mentioned in the Section (11.5), frequency compensated op amp has an in-
ternal capacitance that is used to produce a dominant pole. In addition, the op
amp has a limited output current capability, due to the saturation of the input

stage. If we designate /_, as the maximum possible current that is available

to charge the internal capacitance of an op amp, the charge on the frequency-
compensation capacitor is

CdV = Idt

Thus, the highest possible rate of change of the output voltage is

vyl 1
SR =—¢ = = 11.52
dt max C ( )
For a sinusoidal input signal given by
v,(¢) =V, sinwe (11.53)

The rate of change of the input signal is
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—dv"(t)- v t 11.54
dt =wV, CoOsw (11.54)

Assuming that the input signal is applied to a unity gain follower, then the out-
put rate of change

av, dv(t)

dt dt

=wl, coswt (11.55)

The maximum value of the rate of change of the output voltage occurs when
cos(wt) =1, iee.,, wt =0,271T,4 7T ..., the slew rate

dv
SR = —2

=wl 11.56
dt W ( )

max

Equation (11.56) can be used to define full-power bandwidth. The latter is the
frequency at which a sinusoidal rated output signal begins to show distortion
due to slew rate limiting. Thus

WmVo,rated = SR (1 157)

Thus
S = ok 11.58
" 27-[’ Vo,rated ( . )

The full-power bandwidth can be traded for output rated voltage, thus, if the
output rated voltage is reduced, the full-power bandwidth increases. The fol-
lowing example illustrates the relationship between the rated output voltage
and the full-power bandwidth.

Example 11.6

The LM 741 op amp has a slew rate of 0.5 V/us. Plot the full-power band-
width versus the rated output voltage if the latter varies from £ 1 to £ 10 V.

Solution
% Slew rate and full-power bandwidth

sr = 0.5¢6;
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v0=1.0:10;
fm = sr./(2*pi*v0);

plot(v0,fm)

title('"Full-power Bandwidth vs. Rated Output Voltage")
xlabel('Rated output voltage, V')

ylabel('Bandwidth, Hz')

Figure 11.20 shows the plot for Example 11.6.

B T T T T T T T T

Bandwidth, Hz

w10 Full-power Bandwidth ve. Rated Output Voltage

|:| L L L L L L
1 2 3 4 ] i 7 g 9 10

Rated output woltage, W

Figure 11.20 Rated Output Voltage versus Full-power Bandwidth

11.7 COMMON-MODE REJECTION

For practical op amps, when two inputs are tied together and a signal applied
to the two inputs, the output will be nonzero. This is illustrated in Figure

11.21a,

where the



(a)

(b)

Figure 11.21 Circuits Showing the Definitions of (a) Common-
mode Gain and (b) Differential-mode Gain

common-mode gain, A, is defined as

cm?

v()
= (11.59)
vi,cm
The differential-mode gain, A, is defined as
VO
A, = (11.60)
Via

For an op amp with arbitrary input voltages, V', and V, (see Figure 11.21b),

the differential input signal, v,,, is
Va =Vy =V (11.61)
and the common mode input voltage is the average of the two input signals,

v, +V,
View= =75 (11.62)

The output of the op amp can be expressed as
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Vo =A4,vy A4, (11.63)

cm” i,cm

The common-mode rejection ratio (CMRR) is defined as

As

CMRR = (11.64)

cm

The CMRR represents the op amp’s ability to reject signals that are common to
the two inputs of an op amp. Typical values of CMRR range from 80 to 120
dB. CMRR decreases as frequency increases.

For an inverting amplifier as shown in Figure 11.5, because the non-inverting
input is grounded, the inverting input will also be approximately 0 V due to
the virtual short circuit that exists in the amplifier. Thus, the common-mode
input voltage is approximately zero and Equation (11.63) becomes

vV, UA4,v, (11.65)
The finite CMRR does not affect the operation of the inverting amplifier.

A method normally used to take into account the effect of finite CMRR in cal-
culating the closed-loop gain is as follows: The contribution of the output

voltage due to the common-mode inputis 4_ V. This output voltage con-

cm” i,em”

tribution can be obtained if a differential input signal, V’

error

is applied to the
input of an op amp with zero common-mode gain.

Thus
V,.,A4, =4

error

(11.66)

cm’ i,cm

AN Y

cm’ i,cm i,em

Vv o= =
error Ad CMRR

(11.67)

Figure 11.22 shows how to use the above technique to analyze a non-inverting
amplifier with a finite CMRR.



1 Ly

— o

V. Finite CMRR

(a)

\”—

(b)

Figure 11.22 Non-inverting Amplifier (a) Finite CMRR
( b) Infinite CMRR

From Figure 11.22b, the output voltage is given as

v, :V"(I+R2/R1)+CJ\Z}€R (1 +R2/R,) (11.68)

The following example illustrates the effect of a finite CMRR on the closed-
loop gain of a non-inverting amplifier.
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Example 11.7

For the amplifier shown in Figure 11.22, if R, =50KQ and R, = 1KQ, plot
the closed-loop gain versus CMRR for the following values of the latter:
104, 105, 106, 107, 10% and 10°.

Solution
MATLAB Script

% Non-inverting amplifier with finite CMRR

r2 =150e3;rl = 1.0e3; rr = r2/rl;

cmrr = logspace(4,9,6); gain = (1+rr)*(1+1./cmrr);
semilogx(cmrr,gain,'wo’")

xlabel('Common-mode Rejection Ratio')
ylabel('Closed Loop Gain')

title('Gain versus CMRR')
axis([1.0e3,1.0e10,50.998, 51.008])

Figure 11.23 shows the effect of CMRR on the closed loop of a non-inverting

amplifier.
(Gain versus CMRR

51.005+ © e
§=
o
o0
(=%
(=]
o
o
1]
17
o
O

o]
51+ o o] o o 4
10° 10° 10° 10"

Common-mode Rejection Ratio

Figure 11.23  Effect of finite CMRR on the Gain of a Non-
inverting Amplifier
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EXERCISES
For the circuit shown in Figure P11.1, (a) derive the transfer function

-
V_O (s). (b)If R, = 1KQ, obtain the magnitude response.
I

20 kilohms

I

Figure P11.1 An Op Amp Filter

For Figure 11.12, if the open-loop gain is finite, (a) show that the
closed-loop gain is given by the expression shown in Equation

(11.37). (b)If R, =100K and R, =0.5K, plot the percentage error
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11.3

114

11.6

in the magnitude of the closed-loop gain for open-loop gains of

10%,10*,10° and 10°.

Find the poles and zeros of the circuit shown in Figure P11.3. Use
MATLAB to plot the magnitude response. The resistance values are
in kilohms.

10
1nF
€ -
il 1 nF v,
Vin4{ *
1

Figure P11.3 An Op Amp Circuit

For the amplifier shown in Figure 11.12, if the open-loop gain is 106,
R, =24K, and R, = IK, plot the frequency response for a unity gain

bandwidth of 10°,107, and 10° Hz.

For the inverting amplifier, shown in Figure 11.5, plot the 3-dB

. . Y .
frequency versus resistance ratio—— for the following values of the
1

resistance ratio: 10, 100, 1000, 10,000 and 100,000. Assume that
A4, = 10°® and f = 107 Hz

For the inverting amplifier, shown in Figure 11.5, plot the closed

. . . 2 .
loop gain versus resistance ratio — for the following open-loop
1

gain, AO: 103, 105 and 107. Assume a unity gain bandwidth of
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11.8

f = 107 Hz and resistance ratio,— has the following values: 10,
I

100, 1000, 10,000 and 100,000.

An op amp with a slew rate of 1 V/us is connected in the unity gain
follower configuration. A square wave of zero dc voltage and a peak
voltage of 1 V and a frequency of 100 KHz is connected to the input
of the unity gain follower. Write a MATLAB program to plot the
output voltage of the amplifier.

., =400 MQ, R, =50 MQ,
R, =2KQ and R, =30KQ, plot the input resistance versus the dc

For the non-inverting amplifier, if R,

open-loop gain A,. Assume the following values of the open-loop

gain: 10°,10%,10" and 10°.
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CHAPTER TWELVE

TRANSISTOR CIRCUITS

In this chapter, MATLAB will be used to solve problems involving metal-
oxide semiconductor field effect and bipolar junction transistors. The general
topics to be discussed in this chapter are dc model of BJT and MOSFET,
biasing of discrete and integrated circuits, and frequency response of
amplifiers.

12.1 BIPOLAR JUNCTION TRANSISTORS
Bipolar junction transistor (BJT) consists of two pn junctions connected back-
to-back. The operation of the BJT depends on the flow of both majority and

minority carriers. There are two types of BJT: npn and pnp transistors. The
electronic symbols of the two types of transistors are shown in Figure 12.1.

CllC llc

(a) (b)

Figure 12.1 (a) NPN transistor  (b) PNP Transistor

The dc behavior of the BJT can be described by the Ebers-Moll Model. The
equations for the model are

I, =1.[exp HEO-1 12.1
r ESD Uv, U 0 (12.1)
U EVBCD 1D -

[ =1 [expl2<0-10 12.
i CSD O TD [l ( )
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and

I.=a.1. -1, (12.3)
I, =-1, +ta;1, (12.4)
and
1, =(1-a,)i, +(1-a,)1, (12.5)
where
I and [ are the base-emitter and base-collector saturation
currents, respectively
Q, is large signal reverse current gain of a common-base
configuration
Q. is large signal forward current gain of the common-base
configuration.
and
kT
V,=— (12.6)
q
where
k is the Boltzmann’s constant ( K = 1.381 x 10 V.C/°K),
T is the absolute temperature in degrees Kelvin, and
q is the charge of an electron (q = 1.602 x 10 C).

The forward and reverse current gains are related by the expression
Aples =Apl g =1 (12.7)
where

1 s is the BJT transport saturation current.

The parameters O, and O are influenced by impurity concentrations and

junction depths. The saturation current, /, can be expressed as
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I =
where

A

J s

Jg =
where

n.

1

Oy

J A (12.8)

is the area of the emitter and
is the transport saturation current density, and it can be
further expressed as

gD, n}
Os

(12.9)

is the average effective electron diffusion constant

is the intrinsic carrier concentration in silicon ( #,=1.45x
10" atoms / cm’ at 300° K)
is the number of doping atoms in the base per unit area.

The dc equivalent circuit of the BJT is based upon the Ebers-Moll model.
The model is shown in Figure 12.2. The current sources O/, indicate the

interaction between the base-emitter and base-collector junctions due to the
narrow base region.

In the case of a pnp transistor, the directions of the diodes in Figure 12.2 are
reversed. In addition, the voltage polarities of Equations (12.1) and (12.2) are
reversed. The resulting Ebers-Moll equations for pnp transistors are

I, =1.[exp fnl 10 1 FEO-1 12.10

£ ES DVT |:| ke |EXP':'V}" |:| |:| ( )
, .8 o,p 00 m,0 0

=-a expU—01—-10+ expU——"0— 12.11

C FTES XpDIYT |:| cS pljer D ( )



Ve lIF > arle

Figure 12.2 Ebers-Moll Static Model for an NPN transistor
(Injection Version)

The voltages at the base-emitter and base-collector junctions will define the
regions of operation. The four regions of operations are forward-active,
reverse-active, saturation and cut-off. Figure 12.3 shows the regions of
operation based on the polarities of the base-emitter and base collector
junctions.

Forward-Active Region

The forward-active region corresponds to forward biasing the emitter-base
junction and reverse biasing the base-collector junction. It is the normal

operational region of transistors employed for amplifications. If V. > 0.5V
and V. < 0.3V, then equations (12.1) to (12.4) and (12.6) can be rewritten
as

I.=1 Evﬁ% (12.12)
=1 exp .
c 7 Or, O

© 1999 CRC PressLLC
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I v, 0
I, = ——expli——01 (12.13)
a, OV, O
From Figure 12.1,
1, =1, +1,) (12.14)

Substituting Equations (12.12) and (12.13) into (12.14), we have

1-a .. U
I, =1, ( F)exp[l BE (12.15)
a, v, t
I . U
=—expU——0 (12.16)
B ar, t

where

ﬁF = large signal forward current gain of common-emitter

configuration
ar
= 12.17
Br=1C a, )
From Equations (12.12) and (12.16), we have
I.=B.1, (12.18)

We can also define, ﬁR, the large signal reverse current gain of the common-
emitter configuration as

B = (12.19)



reverse-active saturation

forward bias

reverse bias forward bias

reverse bias

cut-off forward-active

Figure 12.3 Regions of Operation for a BJT as Defined by the Bias
of V. and V.

Reverse-Active Region

The reverse-active region corresponds to reverse biasing the emitter-base
junction and forward biasing the base-collector junction. The Ebers-Moll
model in the reverse-active region (Vzc > 0.5V and Ve <0.3V) simplifies to

I, =1 D/B—BCD 12.20
E ~ SDVT E ( . )
I, =I—Sexpg/ﬁg (12.21)
B. OV DO
Thus,
I, =B, (12.22)

The reverse-active region is seldom used.

© 1999 CRC PressLLC
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Saturation and Cut-off Regions

The saturation region corresponds to forward biasing both base-emitter and
base-collector junctions. A switching transistor will be in the saturation region
when the device is in the conducting or “ON” state.

The cut-off region corresponds to reverse biasing the base-emitter and base-
collector junctions. The collector and base currents are very small compared
to those that flow when transistors are in the active-forward and saturation
regions. In most applications, it is adequate to assume that
I.=1,=1, =0 when a BJT is in the cut-off region. A switching

transistor will be in the cut-off region when the device is not conducting or in
the “OFF” state.

Example 12.1

Assume that a BJT has an emitter area of 5.0 mil’, BF =120, BR =03

transport current density, Jg =2* 107" uA/mil’>and T=300°K. Plot
I versus V. for V. =-1V. Assume 0 < Vi, < 0.7 V.

Solution

From Equations (12.1), (12.2) and (12.4), we can write the following
MATLAB program.

MATLAB Script

%Input characteristics of a BJT

diary ex12 1.dat

diary on

k=1.381e-23; temp=300; g=1.602¢-19;
cur_den=2e-10; area=5.0; beta_f=120; beta r=0.3;
vt=k*temp/q; is=cur_den*area;

alpha f=beta f/(1+beta f);

alpha r=beta r/(1+beta r);
ies=is/alpha_f;

vbe=0.3:0.01:0.65;

ics=is/alpha r;

m=length(vbe)

fori=l:m

ifr(i) = ies*exp((vbe(i)/vt)-1);



© 1999 CRC PressLLC

irl(i) = ics*exp((-1.0/vt)-1);

iel(i) = abs(-ifr(i) + alpha_r*ir1(i));
end

plot(vbe,iel)

title('Input characteristics')
xlabel('Base-emitter voltage, V')
ylabel('Emitter current, A")

Figure 12.4 shows the input characteristics.

Input characteristics
35 T T T T T T T

30+

[
M
T

20F

1aF

Ernitter current, A

—_
[}
T

0
0.25 0.3 0.35 0.4 0.45 0s 0A&5 0B 0Bs
Base-emitter voltage, W

Figure 12.4 Input Characteristics of a Bipolar Junction Transistor

Experimental studies indicate that the collector current of the BIT in the
forward-active region increases linearly with the voltage between the collector-
emitter Vcg. Equation 12.12 can be modified as

» U
=0

12.23
VAF o (1229

1. 01 exp[-j—%

where

Ve is a constant dependent on the fabrication process.
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Example 12.2

For an npn transistor with emitter area of 5.5 mil*, P 098, a R 035,

V,r =250V and transport current density is 20x107° pd/ mil*. Use
MATLAB to plot the output characteristic for V', = 0.65 V. Neglect the

effect of V- on the output current /.. Assume a temperature of 300 °K.

Solution
MATLAB Script

%output characteristic of an npn transistor
%
diary ex12 2.dat
k=1.381e-23; temp=300; q=1.602¢-19;
cur_den=2.0e-15; area=5.5; alpha {=0.98;
alpha_r=0.35; vt=k*temp/q; is=cur_den*area;
ies=is/alpha_f; ics=is/alpha r;
vbe= [0.65];
vee=[00.070.10.20.30.40.50.60.71246];
n=length(vbe);
m=length(vce);
for i=1:n
for j=1:m

ifr(i,j)= ies*exp((vbe(i)/vt) - 1);

vbe(j) = vbe(i) - vee(j);

ir(i,j) = ics*exp((vbe(j)/vt) - 1);

ic(i,j) = alpha_f*ifr(i,j) - ir(i,));

end

end
icl =ic(1,:);
plot(vce, icl,'w")
title("Output Characteristic')
xlabel('Collector-emitter Voltage, V")
ylabel('Collector current, A")
text(3,3.1e-4, 'Vbe = 0.65 V")
axis([0,6,0,4¢-4])

Figure 12.5 shows the output characteristic.
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Figure 12.5 Output Characteristic on an NPN Transistor

12.2 BIASING BJT DISCRETE CIRCUITS
12.2.1 Self-bias circuit

One of the most frequently used biasing circuits for discrete transistor circuits
is the self-bias of the emitter-bias circuit shown in Figure 12.6.

\

cc

(a)
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(b)

Figure 12.6 (a) Self-Bias Circuit (b) DC Equivalent Circuit of (a)

The emitter resistance, R, provides stabilization of the bias point. If V,

and R, are the Thevenin equivalent parameters for the base bias circuit, then

Vs = Yocks (12.24)
Ry + Ry,
Ry = RBIHRBZ (12.25)
Using Kirchoff’s Voltage Law for the base circuit, we have
Vg =1Ry +Vy 1. R, (12.26)
Using Equation (12.18) and Figure 12.6b, we have
I, =1,+1.=1,+B.1, :(BF +1)IB (12.27)

Substituting Equations (12.18) and (12.27) into (12.26), we have
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VBB ~ VBE

B = (12.28)
R, + (BF +1)RE
or
Ve =V,
I. = BB BE (12.29)
Ry (B +1)
B B "
Applying KVL at the output loop of Figure 12.6b gives
Vg =Vee = IR — 1R, (12.30)

:Vcc‘fc%Rc +R%F% (12.31)

12.2.2 Bias stability

Equation (12.30) gives the parameters that influence the bias current /.. The
voltage V', depends on the supply voltage V.. In some cases, V. would
vary with /., but by using a stabilized voltage supply we can ignore the
changes in V., and hence V. The changes in the resistances R, and
R, are negligible. There is a variation of ﬁF with respect to changes in /..

A typical plot of BF versus 1 ¢ is shown in Figure 12.7.

IC
Figure 12.7 Normalized plot of BF as a Function of Collector
Current
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Temperature changes cause two transistor parameters to change. These are (1)
base-emitter voltage (¥, ) and (2) collector leakage current between the base

and collector ([, ). The variation on ¥, with temperature is similar to

the changes of the pn junction diode voltage with temperature. For silicon
transistors, the voltage V', varies almost linearly with temperature as

AV, 0-2(n- 1) my (12.32)

where
1, and T, are in degrees Celsius.

The collector-to-base leakage current, [, approximately doubles every 10°

temperature rise. As discussed in Section 9.1, if [, is the reverse leakage
current at room temperature (25 °C), then

%Tz 259 cnold

]CBOZ =2 ]CBOI

and
NCBO = ICBOZ _ICBOI =1
ﬁrz 259%cnoQd (]

- 10 (12.33)
B

0
= I CBO g
Since the variations in [ cso and Vpg are temperature dependent, but changes

in V- and ﬁF are due to factors other than temperature, the information

about the changes in V. and ﬁF must be specified.

From the above discussion, the collector current is a function of four variables:
Viaes Legos Brs Ve The change in collector current can be obtained using

partial derivatives. For small parameter changes, a change in collector current
is given as

—_ OYC
v,

dl . 7/ 8 ol
Al AV, +——NAI,, +£ABF + AV, (12.34)
r

dVCBO dVC C
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The stability factors can be defined for the four variables as

o, A,
Sy == 10
oB. AB.
P N
YooV, AV,
ol AV
SI - c 0 c
al CBO Al CBO
and
o, _ Al

= O (12.35)

S
) SS |\

Using the stability factors, Equation (12.34) becomes

Al =S8, AV, +SpAB. +S,Al yy +S,0 AV (1236)

From Equation (12.30),

S, = dle _ : 12.37
V_dVBE_ RB +R ?F-F%% (12.37)
B, " 7E Br
From Equation (12.31),
Ve =V,
I.= % (12.38)
R+,
Thus, the stability factor S is given as
dl, 1
Syee = (12.39)

dVCC - RC +RE/aF

To obtain the stability factor S, an expression for /. involving /., needs
to be derived. The derivation is assisted by referring to Figure 12.8.
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b

L

Figure 12.8 Current in Transistor including / -,

The current
1 c= I ct 1 CBO

and

]yc = BF(]B +1c30)
From Equations (12.40) and (12.41), we have
Ie = Bl +(Be +1)lcao
Assuming that B, +1 3, then
I = BFIB +BF1CBO

SO
I
I,=—"-1
B BF CBO

The loop equation of the base-emitter circuit of Figure 12.6(b) gives
VBB - VBE = IBRBB +RE (IB +Ic)

=]B(RBB +RE)+RE]C

(12.40)

(12.41)

(12.42)

(12.43)

(12.44)

(12.45)
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Assuming that 8, +1 U3, and substituting Equation (12.44) into (12.45),
we get

07 U
Vig =Vigp = (RBB +R; )DﬁB 1 o E"’ I.R; (12.46)
i3

Solving for /., we have

VBB - VBE + (RBB + RE )I CBO

(12.47)
(RBB +RE%: +RE

Taking the partial derivative,

I. =

ol R. +R
= o ¢ :( BB ) £ (12.48)

The stability factor involving ﬁp and S pcan also be found by taking the
partial derivative of Equation (12.47). Thus,

SI

g = al . — (RB +RE)[VBB Ve +(RB +RE)]CBO]
P oB (RB +R, "'.BRE)2

(12.49)

The following example shows the use of MATLAB for finding the changes in
the quiescent point of a transistor due variations in temperature, base-to-
emitter voltage and common emitter current gain.

Example 12.3

The self-bias circuit of Figure 12.6 has the following element values:
R, =50K, R,, =10K, R, =12 K, R. =68 K, [3. varies from
150 to 200 and V. is 10 £0.05 V. I, is 1 pA at25 °C. Calculate the
collector current at 25 °C and plot the change in collector current for
temperatures between 25 and 100 °C. Assume V. and Brat 25 °C are 0.7 V
and 150, respectively.
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Solution

Equations (12.25), (12.26), and (12.30) can be used to calculate the collector
current. At each temperature, the stability factors are calculated using

Equations (12.37), (12.39), (12,48) and (12.49). The changes in V,, and
1 cgo With temperature are obtained using Equations (12.32) and (12.33),

respectively. The change in /. for each temperature is calculated using
Equation (12.36).

MATLAB Script:

% Bias stability

%

rb1=50e3; rb2=10e3; re=1.2¢3; rc=6.8e3;

vee=10; vbe=0.7; icbo25=1e-6; beta=(150+200)/2;
vbb=vec*rb2/(rb1+1b2);

rb=rb1*rb2/(rb1+rb2);
ic=beta*(vbb-vbe)/(rb+(beta+1)*re);

%stability factors are calculated

svbe=-beta/(rb+(beta+1)*re);

alpha=beta/(beta+1);

svee=1/(rc + (re/alpha));

svicbo=(rb+re)/(re+(rb+re)/alpha);
sbeta=((rb+re)*(vbb-vbe+icbo25*(rb+re))/(rb+retbeta*re)"2);
% Calculate changes in Ic for various temperatures

t=25:1:100;

len t = length(t);

dbeta = 50; dvcc=0.1;

for i=1:len_t
dvbe(i)= -2e-3*(t(1)-25);
dicbo(i)=icbo25*(2"((t(1)-25)/10)-1);
dic(i)=svbe*dvbe(i)+svcc*dvee...

+svicbo+dicbo(i)+sbeta*dbeta;

end

plot(t,dicbo)

title("Change in collector current vs. temperature')

xlabel('Temperature, degree C')

ylabel('Change in collector current, A')

Figure 12.9 shows /. versus temperature.
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10 Change in collectar current vs. temperature
2 T T T T T T T

Change in collector current, A

20 30 40 A0 R0 70 a0 50 100
Temperature, degree C

Figure 12.9 /. versus Temperature

12.3 INTEGRATED CIRCUIT BIASING

Biasing schemes for discrete electronic circuits are not suitable for integrated
circuits (IC) because of the large number of resistors and the large coupling
and bypass capacitor required for biasing discrete electronic circuits. It is
uneconomical to fabricate IC resistors since they take a disproportionately
large area on an IC chip. In addition, it is almost impossible to fabricate IC
inductors. Biasing of ICs is done using mostly transistors that are connected to
create constant current sources. Examples of integrated circuit biasing
schemes are discussed in this section.
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12.3.1 Simple current mirror

A simple current mirror is shown in Figure 12.10. The current mirror consists
of two matched transistors Q; and Q, with their bases and emitters connected.
The transistor Q) is connected as a diode by shorting the base to its collector.

1

Figure 12.10 Simple Current Mirror

From Figure 12.10, we observe that

Using KCL, we get
Tp =1 +1y +1g,
=g + g
But

1
IBZ = Bizl

llo

(12.50)

(12.51)
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Assuming matched transistors
Iy Ol
I, 01, (12.52)

From Equations (12.51) and (12.52), we get

I, =1 +I arz,, o+ L D tB+20
R~ g B+1 Ezﬂ B"'IE_E}B"'IEIEZ (12.53)
and
,BI
_ICZ ﬁIBZ B+1
Therefore

Oop uB+1d B 7
PBifprat T peals

I,= (12.54)

1, 01, it p>>1 (12.55)

Equation (15.55) is true provided Q; is in the active mode. In the latter mode
of transistor operation, the device Q, behaves as a current source. For Q, to
be in the active mode, the following relation should be satisfied

VCE 2 > VCEsat

12.3.2 Wilson current source

The Wilson current source, shown in Figure 12.11, achieves high output
resistance and an output current that is less dependent on transistor ﬁF. To

obtain an expression for the output current, we assume that all three transistors
are identical. Thus
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Io, =1

VBE] = VBEZ

B = Bey =B = B (12.56)
Vee
C l IO
| |\£3
B3 ¢ |E3
lcq l l
IE2
b
I ls;
Figure 12.11 Wilson Current Source
Using KCL at the collector of transistor Q; , we get
- — I,
Ty =1p =1y =1 =1~
F
therefore,
]0 =:BF(]R _]CI) (12.57)

Using KCL at the emitter of Q3 , we obtain

Loy =1y g +1p =1 215
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1, 0+20
- CID ,BFD
But
B:
I, =a.l,.,=——1
0 FTE3 ﬁF+1 E3

Substituting Equation (12.58) into (12.59), we have

L-RE .28
O_DBF+1D:| BFDCI

Simplifying Equation (12.60), we get

0B, +100

]Cl :Dﬁlj A +2%[0

Combining Equations (12.57) and (12.61), we obtain

I‘ﬁE] DBF+1EID
0o~ FDR DBF+2DOE

Simplifying Equation (12.62), we get

0 B:+2B. O

[ =
0 EBI§+2BF +2|:|R

2 H

O
-0-—————0
O B;+2B.+20°

For reasonable values of 3,

e fe<i
-
0B; +2B, +20

(12.58)

(12.59)

(12.60)

(12.61)

(12.62)

(12.63)
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and Equation (12.63) becomes
I, U1,
Thus, [3 has little effect on the output current, and

Vee =Vips =V,
IR - cc ;E?y BE1 (1264)
C

Example 12.4

For Figures 12.10 and 12.11, what are the percentage difference between the
reference and output currents for the 3, from 40 to 200. Assume that for

both figures, V. =10V, R, =50KQ and V,, =0.7V.
Solution

We use Equation (12.50) to calculate /, and Equation (12.53) to find 7, of
the simple current mirror. Similarly, we use Equation (12.64) to find [, and

Equation (12.63) to calculate [, of the Wilson current source.

MATLAB Script

% Integrated circuit Biasing

vee=10; rc=50e3; vbe=0.7;

beta =40:5:200; irl=(vcc-vbe)/rc;

ir2=(vcc-2*vbe)/rc; m=length(beta);

for i=1:m
i01(i) = beta(i)*irl/(beta(i) + 2);
pd1(i)=abs((io1(i)-ir1)*100/irl);
102(i)=(beta(i)"2+2*beta(i))/(beta(i)"2+2*beta(i)+2);
pd2(i)=abs((i02(i)*ir2-ir2)*100/ir2);

end

subplot(211), plot(beta,pdl)

%title(‘error for simple current mirror')

xlabel('Transistor beta')

ylabel('Percentage error')

text(90,5,'Error for simple current mirror')

subplot(212),plot(beta,pd2)
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%title('Error for Wilson current mirror')
xlabel('Transistor beta')

ylabel('Percentage error')

text(90, 0.13, 'Error for Wilson current source')

Figure 12.12 shows the percentage errors obtained for the simple current
mirror and Wilson current source.

E T T T T T T T
Error for simple current mirror

Percentage error

40 B0 a0 100 120 140 160 180 200
Transistor beta

D15 T T T T T T T
Errar for Wilson current source

Percentage errar

|:| 1 1

a0 B0 a0 1a0 120 140 160 180 200
Transistor beta

Figure 12.12 Percentage Error between Reference and Output
Currents for Simple Current Mirror and Wilson
Current Source

12.4 FREQUENCY RESPONSE OF COMMON EMITTER
AMPLIFIER

The common-emitter amplifier, shown in Figure 12.13, is capable of
generating a relatively high current and voltage gains. The input resistance is

medium and is essentially independent of the load resistance R,. The output

resistance is relatively high and is essentially independent of the source
resistance.
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The coupling capacitor, C,, couples the source voltage V¢ to the biasing
network. Coupling capacitor C,, connects the collector resistance R, to
the load R,. The bypass capacitance C is used to increase the midband
gain, since it effectively short circuits the emitter resistance R, at midband
frequencies. The resistance R, is needed for bias stability. The external

capacitors C,, C.,,C, will influence the low frequency response of the

common emitter amplifier. The internal capacitances of the transistor will
influence the high frequency cut-off. The overall gain of the common-emitter
amplifier can be written as

2
A,s (s + wz)

s+ wu)(s +w,, )(S +WL3)(1 +s/wH)

(12.65)

A(s) = (

where
A,,  isthe midband gain.

Wy is the frequency of the dominant high frequency pole

W, ,W;.,, W, are low frequency poles introduced by the
coupling and bypass capacitors

w, is the zero introduced by the bypass capacitor.
VCC
A
RC
C
Ra: &

b *

AN \
\Y/

o]
\A @ Re, R,

Figure 12.13 Common Emitter Amplifier
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The midband gain is obtained by short circuiting all the external capacitors and
open circuiting the internal capacitors. Figure 12.14 shows the equivalent for
calculating the midband gain.

Beta™l

|
L s o \ +
r
s

Mee R

Figure 12.14 Equivalent Circuit for Calculating Midband Gain

From Figure 12.14, the midband gain, A _, is

m?

v O

= o
m
VS

L

A ! O
R +7y s +[RBHI’7T]E

(12.66)

= —B[rCE HRC ||RL]

It can be shown that the low frequency poles, w,,,w,,, W, ;, can be obtained
by the following equations

1
T,=— =C.R, (12.67)
Wi
where
R, =R, +[RB Hrn] (12.68)
1
[,=— = Ccz[RL +(R, r)] (12.69)
Wia
and
1 ,
T, =_=CERE (12.70)
Wri3
where
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R. =R (12.71)
and the zero
1
= 12.72
w, R,.C, ( )

Normally, w, < w,; and the low frequency cut-off w, is larger than the
largest pole frequency. The low frequency cut-off can be approximated as

w, D\/(wu)2+ (WL2)2+ (v11L3)2 (12.73)

The high frequency equivalent circuit of the common-emitter amplifier is
shown in Figure 12.15.

Figure 12.15  Equivalent Circuit of CE Amplifier at High
Frequencies

In Figure 12.15, Cu is the collector-base capacitance, C, is the emitter to

base capacitance, 7, is the resistance of silicon material of the base region

between the base terminal B and an internal or intrinsic base terminal B’.
Using the Miller Theorem, it can be shown that the 3-dB frequency at high
frequencies is approximately given as

[’" . +(&, ”RS)])CT (12.74)

-1 _
Wy = (l"n

where

C, =C,+ Cu[l +g,(R, HRC)] (12.75)

and
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I,
-.C 12.76
gm !7T ( )

In the following example, MATLAB is used to obtain the frequency response
of a common-emitter amplifier.

Example 12.5

For a CE amplifier shown in Figure 12.13,
B=150, R, =2 KQ, R. =4KQ,C, =100 pF, C, =5 pF, V.. =10V,

r,=r,=60KQ, R, =15KQ, C, =2 uF,C., =4 uF, C, =150 ur,
R, =60 KQ, R,, =40 KQ, R, =100Q, r, =10 Q.
Use MATLAB to plot the magnitude response of the amplifier.

Solution

Using Equations (12.67), (12.69), (12.70) and (12.74) are used to calculate the
poles of Equation (12.65). The zero of the overall amplifier gain is calculated
using Equation (12.66). The MATLAB program is as follows:

MATLAB Script

%Frequency response of CE Amplifier

rc=4e3; rb1=60e3; rb2=40e3; rs=100; rce=60¢e3;
re=1.5e3; rI=2e3; beta=150; vcc=10; vt=26¢-3; vbe =0.7;
ccl=2e-6; cc2=4e-6; ce=150e-6;, rx=10; cpi=100e-12;
cmu=>5e-12;

% Ic is calculated

rb = (rbl * tb2)/(rbl + 1b2);

vbb = vee * rb2/(rbl + rb2);

icq = beta * (vbb - vbe)/(rb + (beta + 1)*re);

% Calculation of low frequency poles

% using equations (12.67), (12.69) and (12.70)
rpi=beta * vt/icq;

rb_rpi=rpi * rb/(rpi + rb);

rin=rs +rb_rpi;

wl1=1/(rin * ccl);

rc_rce=rc * rce/(rc + rce);



© 1999 CRC PressLLC

wl2=1/(cc2 * (r] + rc_rce));
rb_rs=rb * rs/(rb + rs);
rx1=(rpi + rb_rs)/(beta + 1);
re_prime=re * rx1/(re + rx1);
wl3=1/(re_prime * ce);

% Calculate the low frequency zero using equation (12.72)
wz = 1/(re*ce);

% Calculate the high frequency pole using equation (12.74)
gm = icq/vt;

tbrs_prx = (1b * rs/(rb + 1s)) + rX;

rt = (rpi * rbrs_prx)/(rpi + rbrs_prx);

rl rec =1l * rc/(tl + rc);

ct=cpi+cmu* (1 +gm *rl _rc);

wh = 1/(ct * rt);

% Midband gain is calculated

rcercrl = rce * rl_rc/(rce + 1l_rc);

am = -beta * rcercrl * (rb/(rb + rpi)) * (1/(rin));

% Frequency response calculation using equation (12.65)

a4 =1; a3 =wll + wi2 + wi3 + wh;

a2 = wll*wl2 + wll *wl3 + wi2*wl3 + wll *wh + wi2*wh + wil3*wh;
al = wll *wl2*wl3 +wll *wl2*wh + wll *wl3*wh + wI2*wl3*wh;
a0 = wll *wl2*wl3*wh;

den=[a4 a3 a2 al a0];

b3 = am*wh;

b2 =b3*wz; bl =0; b0 =0;

num = [b3 b2 bl b0];

w = logspace(1,10);

h = fregs(num,den,w);

mag = 20*log10(abs(h));

f=w/(2*pi);

% Plot the frequency response

semilogx(f,mag,'w")

title('Magnitude Response')

xlabel('Frequency, Hz")

ylabel('Gain, dB')

axis([1, 1.0e10, 0, 45])

The frequency response is shown in Figure 12.16.
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Magnitude Response

40} -

30+ 1

Gain, dB

0 I i}
10 10 10
Frequency, Hz
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Figure 12.16 Frequency Response of a CE Amplifier

12.5 MOSFET CHARACTERISTICS

Metal-oxide-semiconductor field effect transistor (MOSFET) is a four-terminal
device. The terminals of the device are the gate, source, drain, and substrate.
There are two types of mosfets: the enhancement type and the depletion type.
In the enhancement type MOSFET, the channel between the source and drain
has to be induced by applying a voltage on the gate. In the depletion type
mosfet, the structure of the device is such that there exists a channel between
the source and drain. Because of the oxide insulation between the gate and the
channel, mosfets have high input resistance. The electronic symbol of a
mosfet is shown in Figure 12.19.
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A

-

A 4

.

(a) (b)

Figure 12.17 Circuit Symbol of (a) N-channel and
(b) P-channel MOSFETsSs

Mosfets can be operated in three modes: cut-off, triode, and saturation
regions. Because the enhancement mode mosfet is widely used, the
presentation in this section will be done using an enhancement-type mosfet. In
the latter device, the channel between the drain and source has to be induced
by applying a voltage between the gate and source. The voltage needed to

create the channel is called the threshold voltage, }.. For an n-channel

enhancement-type mosfet , V. is positive and for a p-channel device it is

negative.

Cut-off Region

For an n-channel mosfet, if the gate-source voltage V¢ satisfies the condition
Vs <V5 (12.77)

then the device is cut-off. This implies that the drain current is zero for all
values of the drain-to-source voltage.

Triode Region

When Vg >V, and V) is small, the mosfet will be in the triode region. In

the latter region, the device behaves as a non-linear voltage-controlled
resistance. The I-V characteristics are given by
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I, = kn[Z(VGs —VT)VDS —VDSZ] (12.78)

provided

Vs SVes = Vi (12.79)
where

l'l}’l ggox W u}’l C())C
k,=————=—"—" (12.80)
20 L 2 0O

and

u, is surface mobility of electrons

& is permittivity of free space ( 8.85 E-14 F/cm)

£, is dielectric constant of SiO,

t,, is thickness of the oxide

L is length of the channel

/4 is width of the channel

Saturation Region

Mosfets can operate in the saturation region. A mosfet will be in saturation
provided

Vs 2Ves = V7 (12.81)

and I-V characteristics are given as
2
I, =k, (VGS —Vr) (12.82)

The dividing locus between the triode and saturation regions is obtained by
substituting

Vos =V =V (12.83)

into either Equation (12.78) or (12.82), so we get



I, =k, Vs (12.84)

In the following example, I-V characteristics and the locus that separates triode
and saturation regions are obtained using MATLAB.

Example 12.6

For an n-channel enhancement-type MOSFET with k, =1 mA /V? and
V =15V, use MATLAB to sketch the I-V characteristics for
Vis =4,6,8V andfor V)¢ between 0 and 12 V.

Solution
MATLAB Script

% I-V characteristics of mosfet
%

kn=1e-3; vt=1.5;
vds=0:0.5:12;

vgs=4:2:8;

m=length(vds);

n=length(vgs);

fori=1:n
for j=1:m
if vgs(i) < vt
cur(i,j)=0;
elseif vds(j) >= (vgs(i) - vt)
cur(i,j)=kn * (vgs(i) - vt)"2;
elseif vds(j) < (vgs(i) - vt)
cur(i,j)= kn*(2*(vgs(i)-vt)*vds(j) - vds(j)"2);
end
end
end
plot(vds,cur(1,:),'w',vds,cur(2,:),'w',vds,cur(3,:),'w")
xlabel('Vds, V')
ylabel('Drain Current,A")
title('I-V Characteristics of a MOSFET")
text(6, 0.009, 'Vgs =4 V")
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text(6, 0.023, 'Vgs = 6 V)
text(6, 0.045, 'Vgs =8 V)

Figure 12.18 shows the I-V characteristics.

-V Characteristics of a MOSFET

0.05 . . . :
Vgs=8Y
0.04} .
<
£ 0.03} .
5
© Vgs =6V
50,02
(A ]
0.01 Vgs =4V '
0 1 1 1 1 L
0 2 4 6 8 10 12
Vds, V

Figure 12.18 I-V Characteristics of N-channel Enhancement-type
Mosfet

12.6 BIASING OF MOSFET CIRCUITS

A popular circuit for biasing discrete mosfet amplifiers is shown in Figure
12.19. The resistances R, and R;, will define the gate voltage. The

resistance Rs improves operating point stability.
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Figure 12.19 Simple Biasing Circuit for Enhancement-type NMOS

Because of the insulated gate, the current that passes through the gate of the
MOSFET is negligible. The gate voltage is given as

1% _Rer (12.85)
G~ DD :
Rg + Rg,
The gate-source voltage V¢ is
Vs =V — IR (12.86)

For conduction of the MOSFET, the gate-source voltage Vg should be

greater than the threshold voltage of the mosfet, V..  Since [, = [,
Equation (12.86) becomes

Vs =V — IR (12.87)
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The drain-source voltage is obtained by using KVL for the drain-source circuit
Vs =Vpp =1pRp — IR
=V, —1,(R, —Ry) (12.88)
For proper operation of the bias circuit,
Vos >V (12.89)
When Equation (12.89) is satisfied, the MOSFET can either operate in the
triode or saturation region. To obtain the drain current, it is initially assumed
that the device is in saturation and Equation (12.82) is used to calculate /.
Equation (12.81) is then used to confirm the assumed region of operation. If

Equation (12.82) is not satisfied, then Equation (12.78) is used to calculate / , .
The method is illustrated by the following example.

Example 12.7

For Figure 12.19, V, =2 V, k, = 05 mA/N’, V,, = 9V,
R, =R, =10 MQ, R, =R, =10 KQ. Find I, and V.

Solution
Substituting Equation (12.86) into Equation (12.82), we have
2
1=k, (Vg -1,R, —VT) (12.90)
Simplifying Equation (12.90), we have
0=k, R31 =[14207, =V)R, |1, +k(, -7, ) (12.91)

The above quadratic equation is solved to obtain /,,. Two solutions of [,
are obtained. However, only one is sensible and possible. The possible one is



the one that will make Vg > V. With the possible value of [, obtained,
V s is calculated using Equation (12.88). It is then verified whether

VDS > VGS —V;

The above condition ensures saturation of the device. If the device is not in
saturation, then substituting Equation (12.86) into Equation (12.78), we get

(12.92)

Iy =k |20V, ~1,Ry =V XVoy <Ry +R)L) {Vry <Ry RL,)

Simplifying Equation (12.92), we get the quadratic equation
0=I2[(R; +R,)? +2R,(R, +R,)

+ID%VDD(RD +R) 2, R, 2V, V)R, +Ry) _%C,E (12.93)

2V, VW Vi

Two roots are obtained by solving Equation (12.93). The sensible and
possible root is the one that will make

Ves > Vr
The MATLAB program for finding /,, is shown below.

MATLAB Script

%

% Analysis of MOSFET bias circuit

%

diary ex12 7.dat

diary on

vt=2; kn=0.5¢e-3; vdd=9;

rgl=10e6; rg2=10e6; rs=10e3; rd=10e3;
vg=vdd * rg2/(rgl + rg2);

% 1d is calculated assuming device is in saturation

al=kn*(rd"2);
a2=-(1 + 2*(vg - vt)*rd * kn);
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a3=kn * (vg - vt)"2;
pl=[al,a2,a3];
rl=roots(p1);

% check for the sensible value of the drain current

vgs =vg-r1s *rl(1);

if vgs > vt
id=rl(1);
else
id=rl(2);

% check for sensible value of the drain current
vgs = vg - r1s*r2(1);
if vgs > vt
id =r12(1);
else
id=r2(2);
end
vds=vdd - (rs + rd)*id;
end

% print out results

fprintf('Drain current is %7.3e Amperes\n',id)

fprintf('Drain-source voltage is %7.3e Volts\n', vds)
The results are

Drain current is 1.886e-004 Amperes

Drain-source voltage is 5.228e+000 Volts

The circuit shown in Figure 12.20 is a mosfet transistor with the drain
connected to the gate. The circuit is normally referred to as diode-connected
enhancement transistor.

From Equation (12.88), the MOSFET is in saturation provided

Vs >Ves =V

1e.,
Vs =Ves = V5 or VgtV > V5

or
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Vo > Vs (12.94)

+
G ——i Vis

S

v

Figure 12.20 Diode-connected Enhancement Type MOSFET

Since V), =0 and V, is positive for n-channel MOSFET, the device is in

saturation and
. 2
ip =k, (Ves -77) (12.95)

Butif ¥V, =V, Equation (12.101) becomes

ip = kn (VDS _Vr)2

The diode-connected enhancement mosfet can also be used to generate dc
currents for nMOS and CMOS analog integrated circuits. A circuit for
generating dc currents that are constant multiples of a reference current is
shown in Figure 12.21. It is a MOSFET version of current mirror circuits
discussed in Section 12.3.

Assuming the threshold voltages of the transistors of Figure 12.21 are the
same, then since transistor T1 is in saturation,

2
Lper =k, (VGSI _VT) (12.96)

Since transistors T1 and T2 are connected in parallel, we get



Visi =Ves2 =Vos (12.97)

and

I, =k (Vs =V,) (12.98)

I V0
™ I I . T2
Figure 12.21 Basic MOSFET Current Mirror
Combining Equations (12.96) and (12.98), the current
I, =1 Elk—zg (12.99)
0 REF Ok, O :

and using Equation (12.74), Equation (12.99) becomes

I, =1 EKV%)ZE (12.100)
0 REF%E .
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Thus, /,, will be a multiple of /., and the scaling constant is determined by
the device geometry. In practice, because of the finite output resistance of
transistor T2, [, will be a function of the output voltage Vv,,.

Example 12.8

For the circuit shown in Figure 12.22, R, =15 MQ, L, =L, =6 um,
W, =12 um, W, =18 im, V,=2.0Vand V,, =5 V. Find the output
current [, Vg, I, and R,. Assume that V;j = 2.5V, UC,, =30
uA/ V2. Neglect channel length modulation.

DD DD
R1 Iol Rz
I V0
T1 B I I R T2
Figure 12.22 Circuit for Example 12.8
Solution
Since T1 is in saturation,
_ 2 _ 2
IDI - knl(VGS _VT) - knl(VDS _VT) (12.101)
VDS =Vyp, — IR, (12.102)

Substituting Equation (12.100) into (12.99), we get
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I, = knl(VDD —V; _R11D1)2

1
k_D1 = (VDD _Vr)2 =2V —ViR ), +R12112>'

nl

] 2
0+ +(Vom=2) 2109

— p272 L] 1
0 = R; 11)1 _EB(VDD _VT)RI k_

The above quadratic equation will have two solutions, but only one of the
solution of [, will be valid. The valid solution will resultin Vg > V..

Using equation (12.100), we obtain

=1 E(V% (12.104)
) |

R= (12.105)

and

The MATLAB program is as follows:
MATLAB Script

%

% Current mirror

%

diary ex12_8.dat

diary on

ucox = 30e-6; 11 = 6e-6; 12 = 6¢-6;
wl = 12e-6; w2=18e-0;

r1=1.5e6; vt=2.0; vdd=5; vout=2.5;

% roots of quadratic equation(12.103) is obtained
kn=ucox * wl/(2 *11);

al =rl1”"2;

a2 = -2*(vdd - vt)*rl - (1/kn);



© 1999 CRC PressLLC

a3 = (vdd - vt)"2;
p=[al,a2,a3];
i =roots(p);

% check for realistic value of drain current
vgs=vdd - r1*i(1);

if vgs > vt
id1 =i(1);
else
id1 =i(2);
end

% output current is calculated from equation(12.100)
% 12 is obtained using equation (12.105)

iout = id1*w2*11/(wl * 12);

r2=(vdd - vout)/iout;

% print results

fprintf('Gate-source Voltage of T1 is %8.3e Volts\n',vgs)
fprintf('Drain Current of T1 is %8.3e Ampers\n', id1)
fprintf('Drain Current Io is %8.3e Ampers\n', iout)
fprintf('Resistance R2 is %8.3e Ohms\n', 12)

The results are

Gate-source Voltage of T1 is 1.730e+000 Volts
Drain Current of T1 is 1.835e¢-006 Ampers
Drain Current Io is 2.753e-006 Ampers
Resistance R2 is 9.082¢+005 Ohms

12.7 FREQUENCY RESPONSE OF COMMON-SOURCE
AMPLIFIER

The common-source amplifier has characteristics similar to those of the
common-emitter amplifier discussed in Section 12.4. However, the common-
source amplifier has higher input resistance than that of the common-emitter
amplifier. The circuit for the common source amplifier is shown in Figure
12.23.
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Figure 12.23 Common-Source Amplifier

The external capacitors C,;, C., and C, will influence the low frequency

response. The internal capacitances of the FET will affect the high frequency
response of the amplifier. The overall gain of the common-source amplifier
can be written in a form similar to Equation (12.65).

The midband gain, 4

common-source amplifier. This is shown in Figure 12.24. The equivalent
circuit is obtained by short-circuiting all the external capacitors and open-
circuiting all the internal capacitances of the FET.

is obtained from the midband equivalent circuit of the

m?

Tgs Ro ROV,
gmvgs
Figure 12.24 Midband Equivalent Circuit of Common-Source
Amplifier
Using voltage division,
R
= (12.106)

v, .= \%
gs S
RI + RG

From Ohm’s Law,
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R,|R,) (12.107)

VO = _gmvgs (rds

Substituting Equation (12.106) into (12.107), we obtain the midband gain as

R, HRL) (12.108)

Vo 0 R,
Am == _gm rds
v, LR, + R,

At low frequencies, the small signal equivalent circuit of the common-source
amplifier is shown in Figure 12.25.

R Co c
I |
AN 1

)
m<
O;U
o<+
£
m<
e
= +

C

Figure 12.25 Equivalent Circuit for Obtaining the Poles at Low
Frequencies of Common-source Amplifier

It can be shown that the low frequency poles due to C,, and C, can be

written as
1
1, =— OC.(R,+ R) (12.109)
Wi
1
1, =— O0Co(R* Ry|r) (12.110)
Wiy

Assuming 7, is very large, the pole due to the bypass capacitance C ¢ can be
shown to be

1 0 R,
FE
WL3 Dl+ngS

(12.111)

O™

and the zero of Cy is
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1
= 12.112
Wy, R,C, ( )

The 3-dB frequency at the low frequency can be approximated as

w, D\/(wu)2+ (WL2)2+ (v11L3)2 (12.113)

For a single stage common-source amplifier, the source bypass capacitor is
usually the determining factor in establishing the low 3-dB frequency.

The high frequency equivalent circuit of a common-source amplifier is shown

in Figure 12.26. In the figure, the internal capacitances of the FET, C o C ad

and C, are shown. The external capacitors of the common of common-
source amplifier are short-circuited at high frequencies.

e

— @

hY
J
(@]

|

ds

+
@ A Re  Comrm 9.V

Figure 12.26 High Frequency Equivalent Circuit of Common-
source Amplifier

Using the Miller theorem, Figure 12.26 can be simplified. This is shown in
Figure 12.27.

The voltage gain at high frequencies is

' [l
v, U R R
4, =—03—1° Ent —5 2119
v, DR+ R Hi+s(R R )C )(1+5R,C,)B
where
C =C, +C, (1 +ng'L) (12.115)
and
C,=C, +C, (12.116)
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Figure 12.27 Simplified High Frequency Equivalent Circuit for
Common-source Amplifier

The high frequency poles are

1
=—F— (12.117)
" a(rw)
Wiy = E — (12.118)
G, (RL HRD‘Fds)

The approximate high frequency cut-off is

1
w, = (12.119)
"o o1 o
0 O+0 -0
[wy, Lw,,, U

o0,

In the following example, MATLAB is used to obtain the midband gain, cut-
off frequencies and bandwidth of a common-source amplifier.



Example 12.9

For the common-source amplifier, shown in Figure 12.23,

C,=C, =1uF, C; =50UF. The FET parameters are

Cn =C,=1pF, C,=10pF, g,=10mA/V,r, =50 KQ.
R, =8KQ, R, =10KQ, R, =2 KQ, R, =50Q,

R, =5MQ, R;, =5 MQ.

Determine (a) midband gain, (b) the low frequency cut-off, (c) high
frequency cut-off, and (d) bandwidth of the amplifier.

Solution
MATLAB Script

%

% common-source amplifier

%

diary ex12 9.dat

diary on

rgl=5e6; rg2=5e6; rd=8e3; rI=10e3;

ri=50; rs=2e3; rds=50e3;

ccl=le-6; cc2=1e-6; cs=50e-6;

gm=10e-3; cgs=10e-12; cgd=1e-12; cds=le-12;

% Calculate midband gain using equation (12.108)
a=(1/rds) + (1/rd) + (1/11);

rlprime = 1/a;

rg = rgl*rg2/(rgl +rg2);

gain_mb = -gm*rg*rlprime/(ri + rg);

% Calculate Low cut-off frequency using equation (12.113)
tl =ccl*(rg + ri);

wll = 1/t1;

rd_rds = (rd*rds)/(rd + rds);

t2 =cc2 * (rl + rd_rds);

wi2=1/t2;

t3=cs * rs/(1 + gm * rs);

wl3=1/t3;

wl=sqrt(wl1°2 + wi2"2 + wi312);
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% Calculate high frequency cut-off using equations (12.115 to
12.119)

cl=cgs + cgd * (1 + gm * rlprime);

c2=cds + cgd;

rg ri=rg * ri/(rg + ri);

whl=1/(rg i *cl);

wh2=1/(rlprime * c2);

int_term = sqrt((1/wh1)"2 + (1/wh2)"2);

wh = 1/int_term;

bw = wh-wl;

% Print results

fprintf('Midband Gain is %8.3f\n', gain_mb)
fprintf('Low frequency cut-off is %8.3e\n', wl)
fprintf('High frequency cut-off is %8.3e\n', wh)
fprintf('Bandwidth is %8.3¢ Hz\n', bw)

The results are
Midband Gain is -40.816
Low frequency cut-off is 2.182e+002

High frequency cut-off is 1.168e+008
Bandwidth is 1.168e+008 Hz
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EXERCISES

For the data provided in Example 12.2, Use MATLAB to sketch the
output characteristics for V, =0.3,0.5,0.7 V. Do not neglect the

effect of V. on the collector current.

For the self-bias circuit, shown in Figure 12.6, the collector current

involving [z, is given by Equation (12.47). Assuming that
Ry, =75KQ, Ry, =25KQ, R, =1KQ, R, =75KQ,
BF =100, and at 25° C, Vy,, =0.6 V and [.,, = 0.01 UA,

determine the collector currents for temperatures between 25 °C and
85 °C. If R, is changed to 3 KQ , what will be the value of /. ?

For Figure 12.13,if Ry =50 KQ, R,, =40 KQ, r, =50Q,
r,=10Q, R,=5KQ, R.=5KQ, r, =100KQ,
Co = Cpy =2pF, C,, =50pF, C, =2pF, B =100, V.
=10V, explore the low frequency response for the following values
of R;: 0.1KQ,1KQ, 5KQ. Calculate the high frequency cut-off
for R, =0.1 KQ.

For the Widlar current source, shown in Figure P12.4, determine the
output currentif R, =40 KQ, V.. =10V, V,,, =0.7 V and

R, =25KQ.
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Figure P12.4 Widlar Current Source

For the n-channel enhancement-type MOSFET with
k, =2mAd/ V? and V., =1V, writt a MATLAB program to

plot the triode characteristics for Voo =2,3,4,5 V when
Vs <1V.

For Figure 12.19, V, =1.5V, k, =0.5mA/V?, V,, = 10V,
R., =10 MQ, R, =12 MQ, and R, =10 KQ. Find [,
for the following values of R,: 2,4, 6,8 KQ. Indicate the region

of operation for each value of Rj.

For the common-source amplifier shown in Figure 12.23,

R, =10 KQ, R, =1 MQ, Ry, =15 KQ, R, =100 Q,
R, =10 MQ, R, =10 MQ,C,, =C,, =2 UF,

Cy =40 UF. The FET parameters are  C,, =10 pF,
C,=C, =15pF, g, =5mA/V, and

r,, =100 KQ. Use MATLAB to plot the frequency response of
the amplifier.
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