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PREFACE  
 
 
MATLAB is a numeric computation software for engineering and scientific 
calculations.  MATLAB is increasingly being used by students, researchers, 
practicing engineers and technicians.  The causes of MATLAB popularity are 
legion.  Among  them are its iterative mode of operation, built-in functions, 
simple programming, rich set of graphing facilities, possibilities for writing 
additional functions, and its extensive toolboxes. 
 
The goals of writing this book are (1) to provide the reader with simple, easy, 
hands-on introduction to MATLAB; (2) to demonstrate the use of MATLAB for 
solving electronics problems;  (3) to  show the various ways MATLAB can be 
used to solve circuit analysis problems;  and (4) to show the flexibility of 
MATLAB for solving general engineering and scientific problems. 
 
Audience 
 
The book  can be used by students, professional engineers and technicians.   The 
first part of the book can be used as a primer to MATLAB.  It will be useful to 
all students and professionals who want a basic introduction to MATLAB.   
Parts 2 and 3 are for electrical and electrical engineering technology students and 
professionals who want to use  MATLAB to explore the characteristics of  
semiconductor devices and  the application of  MATLAB for  analysis and 
design of electrical and electronic circuits and systems.    
 
Organization 
 
The book is divided into three parts:  Introduction to MATLAB, Circuit analysis 
applications using MATLAB, and  electronics applications with MATLAB.  It is 
recommended that the reader work through and experiment with the examples at 
a computer while reading Chapters 1, 2, and 3.  The hands-on approach is one of 
the best ways of learning MATLAB. 
 
Part II consists of Chapters 4 to 8.   This part covers the applications of  
MATLAB in circuit analysis.  The topics covered in Part II are  dc analysis, 
transient analysis, alternating current analysis, and  Fourier analysis.  In addition, 
two-port networks are covered. I have briefly covered the underlying theory and 
concepts, not with the aim of writing a textbook on circuit analysis and 
electronics.   Selected problems in circuit analysis have been solved using 
MATLAB. 
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Part III includes Chapters 9, 10, 11 and 12.  The topics discussed in this part are 
diodes, semiconductor physics, operational amplifiers and transistor circuits.  
Application of MATLAB for problem solving in electronics is discussed. 
Extensive examples showing the use of MATLAB for solving problems in 
electronics are presented. 
 
Each chapter has  its own bibliography and exercises. 
 
 
Text Diskette 
 
Since the text contains  a large number of examples that illustrate  electronics 
and circuit analysis principles and  applications  with MATLAB, a diskette is 
included  that contains all the examples in the book.  The reader can run the 
examples without having to enter the commands.   The examples can also be 
modified to suit the needs of the reader. 
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CHAPTER ONE 
 

MATLAB FUNDAMENTALS 
 
 
MATLAB is a numeric  computation software for engineering and scientific 
calculations.  The name MATLAB stands for MATRIX LABORATORY.  
MATLAB is primarily a tool for matrix computations.  It was developed by 
John Little and Cleve Moler of MathWorks, Inc.  MATLAB was originally 
written to provide easy access to the matrix computation software packages 
LINPACK and EISPACK. 
  
MATLAB is a  high-level language whose basic data type is a matrix that does 
not require dimensioning.  There is no compilation and linking as is done in 
high-level languages, such as C or FORTRAN. Computer solutions in 
MATLAB seem to be much quicker than  those of a high-level language such 
as C or FORTRAN.  All computations are performed in complex-valued dou-
ble precision arithmetic to guarantee high accuracy.   
 
MATLAB has a rich set of plotting capabilities.  The graphics are integrated in 
MATLAB.  Since MATLAB is also a programming environment, a user can 
extend the functional capabilities of MATLAB by writing new modules. 
 
MATLAB has  a large collection of toolboxes in a variety of domains.  Some 
examples of MATLAB toolboxes are control system, signal processing, neural 
network, image processing, and system identification.  The toolboxes consist 
of functions that can be used to perform computations in  a specific domain. 
 
 

1.1 MATLAB BASIC OPERATIONS  
 
When MATLAB is invoked, the command window will display the prompt >>.  
MATLAB is then ready for entering data or executing commands.  To quit 
MATLAB, type the command 
 

exit or quit 
 
MATLAB has on-line help.  To see the list of MATLAB’s help facility, type 
 

help 
 
The help command  followed by a function name  is used to obtain  informa-
tion on a specific MATLAB function.  For example, to obtain information  on 
the use of fast Fourier transform function, fft, one can type the command 
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help fft 
 

The basic data object in  MATLAB is a rectangular numerical matrix with real 
or complex elements.   Scalars are thought of as a 1-by-1 matrix.  Vectors are 
considered as matrices with a row or column.  MATLAB has no dimension 
statement or type declarations.  Storage of data and variables is allocated 
automatically once the data and variables are used. 
 
MATLAB statements are normally of the form: 
 

variable = expression 
 
Expressions typed by the user are interpreted and immediately evaluated by the 
MATLAB system.  If a MATLAB statement ends with a semicolon, MATLAB 
evaluates the statement  but suppresses  the  display of  the results.   MATLAB 
is also capable of executing a number of commands that are stored in a file.  
This will be discussed in Section 1.6.   A matrix 
 

A =

1 2 3
2 3 4
3 4 5

















 

 
may be entered as follows: 
 

A = [1 2 3;  2 3 4; 3 4 5]; 
 
Note that the matrix entries must be surrounded by brackets [      ] with row 
elements separated by blanks or by commas.  The end of each row, with the 
exception of the last row, is indicated by a semicolon.  A matrix A can also be 
entered across three input lines as  
 

A = [ 1 2 3 
         2 3 4 
        3  4 5]; 

 
In this case, the carriage returns replace the semicolons.    A row vector B with 
four elements 
 

B = [ 6 9 12 15 18 ] 
 
can be entered in MATLAB as 
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B = [6 9 12 15 18]; 
 
or 

B = [6 , 9,12,15,18] 
 
For readability, it is better to use spaces  rather than commas between the ele-
ments.  The row vector B can be turned into a column vector by transposition, 
which is obtained by typing 
 

C = B’ 
 
The above results in  
 

C = 
 6 
 9 
 12 
 15 
 18 

 
Other ways of entering the column vector C are 
 

C =  [6 
         9 
         12 
         15 
         18] 

 
or 

C  = [6; 9; 12; 15; 18] 
 
MATLAB is case sensitive in naming  variables, commands and functions.   
Thus b and B are not the same variable.  If you do not want MATLAB to be 
case sensitive, you can use the command 
 

casesen off 
 
To obtain the size of a specific variable, type  size ( ).  For example, to find the 
size of matrix A,  you can execute the following command: 
 

size(A) 
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The result will be a row vector with two entries.  The first is the number of 
rows in A, the second the number of columns in A. 
 
To find the list of variables that have been used in a MATLAB session, type 
the command 
 

whos 
 
There will be a display of variable names and dimensions.  Table  1.1 shows 
the display of the variables that have been used so far in this book: 
 
 

Table 1.1   
Display of  an output of whos command 

 
Name 
 

Size Elements Byte Density Complex 

A 3 by 3 9 72 Full No 
B 1 by 5 5 40 Full No 
C 5 by 1 5 40 Full No 
ans 1 by 2 2 16 Full No 

          
The grand total is 21 elements using 168 bytes. 
 
 
Table 1.2 shows additional MATLAB commands to get one started on 
MATLAB.  Detailed descriptions and usages of the commands can be obtained 
from the MATLAB help facility or from MATLAB manuals. 
 

Table 1.2 
Some Basic MATLAB Commands 

 
Command Description 
% Comments.  Everything appearing after % com-

mand is not executed. 
demo Access on-line demo programs 
length Length of a  matrix 
clear Clears the variables or functions from workspace 
clc Clears the command window during a work session 
clg Clears graphic window 
diary Saves a session in a disk, possibly for printing at a 

later date 
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1.2 MATRIX OPERATIONS 
 
The basic matrix operations are addition(+), subtraction(-),  multiplication (*), 
and conjugate transpose(‘) of matrices.  In addition to  the above basic opera-
tions, MATLAB has two forms of matrix division: the left  inverse operator \ 
or the right inverse operator /. 
  
Matrices of the same dimension may be subtracted or added.  Thus if E and F 
are entered  in MATLAB as 
  

E = [7 2 3; 4 3 6; 8 1 5]; 
 
F = [1 4 2; 6 7 5; 1 9 1];  

and  
G = E - F 
H = E + F 

 
then, matrices G and H will appear on the screen as 
 

G = 
     6    -2     1 
    -2    -4     1 
     7    -8     4 
 
H = 
       8     6     5 
      10    10    11 
       9    10     6 

 
A scalar (1-by-1 matrix) may be added to or subtracted from a matrix.  In this 
particular case, the scalar is added to or subtracted from all the elements of an-
other matrix.  For example, 
 

J = H + 1 
gives 

J = 
      9     7     6 
     11    11    12 
     10    11     7 

 
Matrix multiplication is defined provided the inner dimensions of the two op-
erands are the same.  Thus, if X is an n-by-m matrix and Y is i-by-j matrix,  
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X*Y is defined provided m is equal to i.  Since E and F are 3-by-3 matrices, 
the product 
 

Q = E*F 
 
results as 

 
Q = 
        22    69    27 
        28    91    29 
        19    84    26 

 
Any matrix can be multiplied  by  a scalar.   For example, 
 

2*Q 
gives 

ans = 
           44   138    54 
           56   182    58 
           38   168    52 

 
Note that if a variable name and the “=”  sign are omitted, a variable name  ans  
is automatically created. 
 
 
Matrix division can either be the left division operator \ or the right division 
operator /.  The right division   a/b, for instance,  is algebraically equivalent to 
a
b

  while  the left division a\b is algebraically equivalent to 
b
a

. 

 
If   Z I V* =  and  Z  is non-singular, the left division, Z\V is equivalent to 
MATLAB expression 
 
  I inv Z V= ( ) *  
 
where inv is the MATLAB function for obtaining the inverse of a matrix.  The 
right division denoted by V/Z is equivalent to the MATLAB expression 
 

I V inv Z= * ( )   
 
There are MATLAB functions that can be used to produce special matrices.  
Examples are given in Table 1.3. 
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Table 1.3 
Some Utility Matrices 

 
    Function Description 
ones(n,m) Produces n-by-m matrix with all the elements being 

unity 
eye(n) gives n-by-n identity matrix 
zeros(n,m) Produces n-by-m matrix of zeros 
diag(A) Produce a vector consisting of diagonal of a square 

matrix A 
 
 
 

1.3 ARRAY OPERATIONS 
 
Array operations refer to element-by-element arithmetic operations.  Preceding 
the linear algebraic matrix operations, * /  \ ‘ , by a period (.) indicates an array 
or element-by-element operation.  Thus, the operators .* , .\ , ./,  .^ , represent 
element-by-element multiplication, left division, right division, and raising to 
the power, respectively.  For addition and subtraction, the array and matrix op-
erations are the same.  Thus, + and .+ can be regarded as an array or matrix 
addition. 
  
If A1 and B1 are matrices of the same dimensions, then A1.*B1 denotes an ar-
ray whose elements are products of the corresponding elements of A1 and B1.  
Thus, if 

 
A1 = [2 7 6 
           8 9 10];  
 
B1 = [6 4 3 
           2 3 4]; 

then 
  C1 = A1.*B1 
results in 

 
C1 = 
         12    28    18 
         16    27    40 
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An array operation for left and right division also involves element-by-element 
operation.  The expressions A1./B1 and A1.\B1 give the quotient of element-
by-element division of matrices A1 and B1.  The statement 
 

D1 = A1./B1 
 
gives the result 

 
D1 = 
          0.3333    1.7500    2.0000 
          4.0000    3.0000    2.5000 

 
and the statement 
 

E1 = A1.\B1 
 
gives 

E1 = 
         3.0000    0.5714    0.5000 
         0.2500    0.3333    0.4000 

 
 
The array  operation of raising to the power is denoted by .^.  The general 
statement will be of the form: 
 

q = r1.^s1 
 
If r1 and s1 are matrices of the same dimensions, then the result q is also a ma-
trix of the same dimensions.  For example, if  
 

r1 = [ 7 3 5]; 
 
s1 = [ 2 4 3]; 

 
then 
 

q1 = r1.^s1 
 
gives the result 
 

q1 = 
         49    81   125 
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One of the operands can be scalar.  For example,  
 

q2 = r1.^2 
 
q3 = (2).^s1 

 
will give 
 

q2 = 
         49     9    25 

 
and 
 

q3 = 
         4    16     8 

 
Note that when one of the operands is scalar, the resulting matrix will have the 
same dimensions as the matrix operand. 
 
 

1.4 COMPLEX NUMBERS 
 
MATLAB allows operations involving complex numbers.  Complex numbers 
are  entered using function i or j.   For example, a number z j= +2 2  may be 
entered in MATLAB as 
 

z = 2+2*i 
or 
 

z = 2+2*j 
 
Also,  a complex number za 
 

za j= 2 2 4exp[( / ) ]π  
 
can be entered in MATLAB as  
 

za =  2*sqrt(2)*exp((pi/4)*j) 
 
It should be noted that when complex numbers are entered as matrix elements 
within brackets, one should avoid any blank spaces.  For example,  
y j= +3 4    is represented in MATLAB as 
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y = 3+4*j 
 
If spaces exist around the + sign, such as  
 

u= 3 + 4*j  
 
MATLAB considers it as two separate numbers, and  y will not be equal to u. 
 
If w is a complex matrix given as 
 

w =
1 1 2 2
3 2 4 3

+ −
+ +











j j
j j

 

 
then we can represent it in  MATLAB as 
 

w = [1+j  2-2*j;  3+2*j  4+3*j] 
 
which will produce the result 
 

w = 
       1.0000 + 1.0000i   2.0000 - 2.0000i 
       3.0000 + 2.0000i   4.0000 + 3.0000i 

 
If the entries in a matrix are complex,  then the “prime” (‘) operator produces 
the conjugate transpose.   Thus, 
 

wp = w' 
will produce 

 
wp = 
         1.0000 - 1.0000i   3.0000 - 2.0000i 
         2.0000 + 2.0000i   4.0000 - 3.0000i 

 
For the unconjugate transpose of a complex matrix, we can use the point trans-
pose (.’) command.  For example, 
 

wt = w.' 
 

 
will yield 
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wt = 
        1.0000 + 1.0000i   3.0000 + 2.0000i 
        2.0000 - 2.0000i   4.0000 + 3.0000i 

 
 
 

1.5 THE COLON SYMBOL (:) 
 
The colon symbol (:) is one of the most important operators in  MATLAB.   It 
can be used (1) to create vectors and matrices, (2) to specify sub-matrices and 
vectors,  and (3) to perform iterations.  The statement 
 

t1 = 1:6 
 
will generate a row vector containing the numbers from 1 to 6 with unit incre-
ment.  MATLAB produces the result 
 

t1 = 
        1     2     3     4     5     6 

 
Non-unity, positive or negative increments,  may be specified.  For example, 
the statement 
 

t2 = 3:-0.5:1 
 
will result in 
 

t2 = 
        3.0000    2.5000    2.0000    1.5000    1.0000 

 
The statement 
 

t3 = [(0:2:10);(5:-0.2:4)] 
 
will result in a 2-by-4 matrix 

 
t3 = 
              0        2.0000    4.0000    6.0000    8.0000   10.0000 
         5.0000    4.8000    4.6000    4.4000    4.2000    4.0000 

 
 
Other MATLAB functions for generating vectors are linspace and logspace.   
Linspace generates linearly evenly spaced vectors, while logspace generates  
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logarithmically evenly spaced vectors.  The usage of these functions is of the 
form: 
 

linspace(i_value, f_value, np) 
 
logspace(i_value, f_value, np) 

 
where 
 i_value is the initial value 
 
 f_value is the final value 
 
 np is the total number of elements in the vector. 
 
For example,  
 

t4 = linspace(2, 6, 8) 
 
will generate the vector 
 

t4 = 
        Columns 1 through 7  
 
          2.0000    2.5714    3.1429    3.7143    4.2857    4.8571       
          5.4286 
 
          Column 8  
 
           6.0000 

 
Individual elements in a matrix can be referenced with subscripts inside paren-
theses.  For example, t2(4)  is the fourth element  of vector t2.  Also, for matrix 
t3, t3(2,3) denotes the entry in the second row and third column.  Using the co-
lon as one of the subscripts denotes all of the corresponding row or column.  
For example,  t3(:,4) is the fourth column of matrix t3.  Thus, the statement 
 

t5 = t3(:,4) 
will give 
 

t5 = 
        6.0000 
        4.4000 
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Also, the statement t3(2,:) is the second row of matrix t3.  That is the statement  
 

t6 = t3(2,:) 
 
will result in 
 

t6 = 
        5.0000    4.8000    4.6000    4.4000    4.2000    4.0000 

 
 
If the colon exists as the only subscript, such as t3(:), the latter denotes the 
elements of matrix t3 strung out in a long column vector.   Thus, the statement  
 

t7 = t3(:) 
will result in 
 

t7 = 
         0 
         5.0000 
         2.0000 
         4.8000 
         4.0000 
         4.6000 
         6.0000 
         4.4000 
         8.0000 
         4.2000 
         10.0000 
         4.0000 

 
 
 
Example 1.1 
 
The voltage, v, across a resistance  is given as (Ohm’s Law), v Ri= , where 
i  is the current  and R   the resistance. The power dissipated in resistor R is 
given by the expression  
 

P Ri= 2  
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If  R  = 10 Ohms and the current is increased from 0 to 10 A with increments 
of 2A, write a MATLAB program to generate a table of current, voltage and 
power dissipation. 
 
Solution: 
 
MATLAB Script 
 

diary  ex1_1.dat 
% diary causes output to be written into file ex1_1.dat 
% Voltage and power calculation 
R=10;       % Resistance value 
i=(0:2:10); % Generate current values 
v=i.*R;      % array multiplication to obtain voltage 
p=(i.^2)*R;  % power calculation 
sol=[i v p]  % current, voltage and power values are printed 
diary 
% the last diary command turns off the diary state 

 
 
MATLAB produces the following result: 
 

sol = 
           Columns 1 through 6  
 
           0           2           4           6           8          10 
 
           Columns 7 through 12  
 
           0          20          40          60          80         100 
 
           Columns 13 through 18  
 
           0          40         160         360         640        1000 
 

 
Columns 1 through 6 constitute the current values, columns 7 through 12 are 
the voltages, and columns 13 through 18 are the power dissipation values. 
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1.6 M-FILES 
 
Normally, when  single line commands are entered,  MATLAB processes the 
commands immediately and displays the results.   MATLAB is also capable of  
processing a sequence of commands that are stored in files with extension  m.  
MATLAB files with extension m are called m-files.  The latter are ASCII text 
files, and they are created with a text editor or word processor.   To list  m-files 
in the current directory on your disk, you can use the MATLAB command 
what.  The MATLAB command, type, can be used to show the contents of a 
specified file.   M-files can either be script files or function files.  Both script 
and function files contain a sequence of commands.  However, function files 
take arguments and return values. 
 
1.6.1 Script files 
 
Script files are especially useful for analysis and design problems that require 
long sequences of MATLAB commands.  With script file written using a text 
editor or word processor, the file can be invoked by entering the name of the 
m-file, without the extension.  Statements in a script file operate globally on 
the workspace data.  Normally, when m-files are executing, the commands are 
not displayed on screen.  The MATLAB echo command can be used to view 
m-files while they are executing.  To illustrate the use of script file,  a script 
file will be written to simplify the following complex valued expression z. 
 
 
Example 1.2 
 
Simplify the complex number z and express it both in rectangular and polar 
form. 
 

  z
j j

j j
=

+ + ∠
+ +

( )( )( )
( )( )

3 4 5 2 2 60
3 6 1 2

0

 

 
 
Solution: 
 
The following  program shows the script file that was used to evaluate the 
complex number, z, and express the result in polar notation and rectangular 
form. 
 
MATLAB Script 
 

diary ex1_2.dat 
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% Evaluation of Z 
% the complex numbers are entered 
Z1 = 3+4*j; 
Z2 = 5+2*j; 
theta = (60/180)*pi;   % angle in radians 
Z3 = 2*exp(j*theta); 
Z4 = 3+6*j; 
Z5 = 1+2*j; 
% Z_rect is complex number Z in rectangular form 
disp('Z in rectangular form is');  % displays text inside brackets 
Z_rect = Z1*Z2*Z3/(Z4+Z5); 
Z_rect 
Z_mag = abs (Z_rect);   % magnitude of Z 
Z_angle = angle(Z_rect)*(180/pi);  % Angle in degrees 
disp('complex number Z in polar form, mag, phase'); % displays text 
%inside brackets 
Z_polar = [Z_mag, Z_angle] 
diary 

 
 
The program is named ex1_2.m.  It is included in the disk that accompanies 
this book.  Execute it by typing ex1_2 in the MATLAB command window.  
Observe the result, which should be 
 

Z in rectangular form is 
 

Z_rect = 
               1.9108 + 5.7095i 

 
complex number Z in polar form (magnitude and phase) is 
 

Z_polar = 
                  6.0208   71.4966 

 
 
 
1.6.2 Function Files 
 
Function files are m-files that are used to create new MATLAB functions.  
Variables defined and manipulated inside a function file are local to the func-
tion, and they do not operate globally on the workspace.  However, arguments 
may be passed into and out of a function file. 
 
The general form of a function file is  
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function variable(s) = function_name (arguments) 
% help text in the  usage of the function 
% 
. 
. 
end 

 
To illustrate the usage of function files and rules for writing m-file function, let 
us study the following two examples. 
 
 
Example 1.3 
 
Write a function file to solve the equivalent resistance of series connected re-
sistors, R1, R2, R3, …, Rn. 
 
Solution: 
 
MATLAB Script 

 
function req = equiv_sr(r) 
% equiv_sr is a function program for obtaining 
%             the equivalent resistance of series   
%             connected resistors 
% usage:  req = equiv_sr(r) 
%               r is an input vector of length n 
%               req is an output, the equivalent resistance(scalar) 
% 
n = length(r);    % number of resistors 
req = sum (r);    % sum up all resistors 
end 

 
The above MATLAB script can be found in the function file equiv_sr.m,  
which is available on the disk that accompanies this book. 
 
Suppose we want to find the equivalent resistance of the series connected resis-
tors 10, 20, 15, 16 and 5 ohms.  The following statements can be typed in the 
MATLAB command window  to reference the function equiv_sr 
 

a = [10 20 15 16 5]; 
Rseries = equiv_sr(a) 
diary 

The result obtained from MATLAB is 
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Rseries = 
                 66 

 
 
Example 1.4 
 
Write a MATLAB function to obtain the roots of the quadratic equation 
 

ax bx c2 0+ + =  
 
Solution: 
 
MATLAB Script 
 

function rt = rt_quad(coef) 
% 
% rt_quad  is a function for obtaining the roots of  
%             of a quadratic equation 
% usage: rt = rt_quad(coef) 
%             coef is the coefficients a,b,c of the quadratic 
%                  equation ax*x + bx + c =0 
%             rt are the roots, vector of length 2 
% coefficient a, b, c are obtained from vector coef 
a = coef(1);  b = coef(2);  c = coef(3); 
int = b^2 - 4*a*c; 
if int > 0 
   srint = sqrt(int); 
   x1= (-b + srint)/(2*a); 
   x2= (-b - srint)/(2*a); 
elseif int == 0 
   x1= -b/(2*a); 
   x2= x1; 
elseif int < 0 
   srint = sqrt(-int); 
   p1 = -b/(2*a); 
   p2 = srint/(2*a); 
   x1 = p1+p2*j; 
   x2 = p1-p2*j; 
end 
rt =[x1; 
     x2]; 
end 
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The above MATLAB script can be found in the function file rt_quad.m,  which 
is available on the disk that accompanies this book. 
 
We can use m-file function, rt_quad, to find the roots of the following quad-
ratic equations: 
 
(a)  x2  + 3x + 2 = 0 
 
(b)  x2  + 2x + 1  = 0 
 
(c)  x2  -2x  +3 = 0 
 
The following statements, that can be found in the m-file ex1_4.m,  can be 
used to obtain the roots: 
 

diary ex1_4.dat 
ca = [1 3 2]; 
ra = rt_quad(ca) 
cb = [1 2 1]; 
rb = rt_quad(cb) 
cc = [1 -2 3]; 
rc = rt_quad(cc) 
diary 

 
Type into the MATLAB command window the statement ex1_4 and observe 
the results.  The following results will be obtained: 
 

ra = 
        -1 
         -2 
 
rb = 
        -1 
        -1 
 
rc= 
       1.0000 + 1.4142i 

    1.0000  - 1.4142i 
 
The following is a summary of the rules for writing MATLAB m-file func-
tions: 
 
(1) The word, function, appears as the first word in a function file.  This 
is followed by an output argument, an equal sign and the function name.  The 
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arguments to the function follow the function name and are enclosed within pa-
rentheses. 
 
(2) The information that follows the function, beginning with the % sign, 
shows how the function is used and what arguments are passed.  This informa-
tion is displayed if help is requested for the function name. 
 
(3) MATLAB can accept multiple input arguments and multiple output 
arguments can be returned. 
 
(4)  If a function is going to return more than one value, all the  values 
should be returned as a vector in the function statement.  For example, 
 
 function [mean, variance] = data_in(x) 
 
will return the mean and variance of a vector x.  The mean and variance are 
computed with the function. 
 
(5) If a function has multiple input arguments, the function statement 
must list the input arguments.  For example, 
 
 function [mean, variance] = data(x,n) 
 
will return mean and variance of a vector x of length n. 
 
(6) The last statement in the function file should be an “end” statement. 
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EXERCISES  
 
1.1 The voltage across a discharging capacitor is  
 
  v t e t( ) ( ).= − −10 1 0 2  
 

Generate a table of voltage, v t( ) , versus time, t, for t  = 0 to 50  
 seconds with increment of 5 s. 
 
1.2 Use MATLAB to evaluate the complex number 
 

  z j j
j j

j= + +
+

+ +( )( )
( )

3 6 6 4
2 1 2

7 10  

 
1.3 Write a function-file to obtain the dot product and the vector product  

of two vectors a and b.  Use  the   function to evaluate the dot and 
vector products of vectors x   and y, where  x = (1 5 6) and 
 y  = (2 3 8). 

 
1.4  Write a function-file that can be used to calculate the equivalent  

resistance of n parallel connected resistors.  In general, the equivalent 
resistance of resistors R R R Rn1 2 3, , , ....,  is given by 

 

  
1 1 1 1 1

1 2 3R R R R Req n
= + + + +...  

 
1.5 The voltage V is given as V RI= ,  where R and I are resistance  
 matrix and I current vector.   Evaluate V given that 
 

  R =
















1 2 4
2 3 6
3 6 7

      and    I =
















1
2
6

 

 
 
1.6 Use MATLAB  to simplify the expression 
 
  y j e j ej j= + + + +0 5 6 35 3 60 6 0 3. . ( ). . π  
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1.7 Write a function file to evaluate n factorial (i.e. n!); where  
 

n n n n! ( )( )..( )( )= − −1 2 2 1  

Use the function to compute  x = 7
3 4

!
! !

 

 
1.8 For a triangle with sides of length a, b, and c, the area A is given as 
 

  

A s s a s b s c
where
s a b c

= − − −

= + +

( )( )( )

( ) / 2
 

 
Write a function to compute the area given the sides of a triangle.  
Use the function to compute the area of  triangles with the lengths:  
(a)   56, 27 and 43  (b)  5, 12 and  13. 
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CHAPTER TWO 
 

PLOTTING COMMANDS 
 
 

2.1 GRAPH FUNCTIONS 
 
MATLAB has built-in functions that allow one to generate bar charts, x-y,  
polar, contour and 3-D plots, and bar charts.  MATLAB also allows one to 
give titles to graphs, label the x- and y-axes, and add a grid to graphs.  In 
addition, there are commands for controlling the screen and scaling.  Table 2.1 
shows a list of MATLAB built-in graph functions.  One can use MATLAB’s 
help facility to get more information on the graph functions. 
 

      Table 2.1 
Plotting Functions 

 
FUNCTION 
 

DESRIPTION 

axis freezes the axis limits 
bar plots bar chart 
contour performs contour plots 
ginput puts cross-hair input from mouse 
grid adds grid to a plot 
gtext does mouse positioned text 
histogram gives histogram bar graph 
hold holds plot (for overlaying other plots) 
loglog does log versus log plot 
mesh performs 3-D mesh plot 
meshdom domain for 3-D mesh plot 
pause wait between plots 
plot performs linear x-y plot 
polar performs polar plot 
semilogx does semilog x-y plot (x-axis logarithmic) 
semilogy does semilog x-y plot (y-axis logarithmic) 
shg shows graph screen 
stairs performs stair-step graph 
text positions text at a specified location on graph 
title used to put title on graph 
xlabel labels x-axis 
ylabel labels y-axis 
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2.2 X-Y PLOTS AND ANNOTATIONS 
 
The plot command generates a linear x-y plot.  There are three variations of the 
plot command. 
 

(a)    plot(x) 
 
(b) plot(x, y) 
 
(c) plot(x1, y1,  x2,  y2,  x3,  y3, ..., xn,  yn) 

 
If x is a vector, the command 
 

plot(x) 
 
will produce a linear plot of the elements in the vector x as a function of the 
index of the elements in x.  MATLAB  will connect the points by straight lines.  
If x is a matrix, each  column will be plotted as a separate curve on the same 
graph.   For example, if 
 

x  = [ 0 3.7 6.1 6.4 5.8 3.9 ]; 
 
then, plot(x) results in the graph shown in Figure 2.1. 
 
If x and y are vectors of the same length, then the command 
 

plot(x, y) 
 
plots the elements of x (x-axis) versus the elements of y (y-axis).  For example, 
the MATLAB commands 
 

t = 0:0.5:4; 
y = 6*exp(-2*t); 
plot(t,y) 

 
will plot the function y t e t( ) = −6 2   at the following times: 0, 0.5, 1.0, …, 4 .   
The plot is shown in Figure 2.2. 
 
To plot multiple curves on a single graph, one can use the plot command  
with multiple arguments, such as 
 

plot(x1,  y1,  x2,  y2,  x3,  y3, ..., xn, yn) 
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Figure 2.1  Graph of a Row Vector x 

 
The variables x1, y1, x2, y2,  etc., are pairs of vector.  Each x-y pair is 
graphed, generating multiple lines on the plot.  The above plot command 
allows vectors of different lengths to be displayed on the same graph.  
MATLAB automatically scales the plots.  Also, the plot remains as the current 
plot until another plot is generated; in which case, the old plot is erased.  The 
hold command holds the current plot on the screen, and inhibits erasure and 
rescaling.  Subsequent plot commands will overplot on the original curves.  
The hold command remains in effect until the command is issued again. 
  
When a graph is drawn, one can add a grid,  a title,  a label and  x- and y-axes 
to the graph.  The commands for grid, title, x-axis label, and y-axis label are 
grid (grid lines), title (graph title), xlabel (x-axis label), and ylabel (y-axis 
label), respectively.  For example, Figure 2.2 can be titled, and axes labeled 
with the following commands: 
 

t = 0:0.5:4; 
y = 6*exp(-2*t); 
plot(t, y) 
title('Response of an RC circuit') 
xlabel('time in seconds') 
ylabel('voltage in volts') 
grid 
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Figure 2.3 shows the graph of Figure 2.2 with title, x-axis, y-axis and grid 
added. 
 

 
 

Figure 2.2   Graph of Two Vectors t and y 
 
 
To write text on a graphic screen beginning at a point (x, y) on the graphic 
screen, one can use the command 
 

text(x, y, ’text’) 
 
For example, the statement 
 

text(2.0, 1.5, ’transient analysis’) 
 
will write the text, transient analysis, beginning at point (2.0,1.5).  Multiple 
text commands can be used.  For example, the statements 
 

plot(a1,b1,a2,b2) 
text(x1,y1,’voltage’) 
text(x2,y2,’power’) 
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will provide texts for two curves: a1 versus b1 and a2 versus b2.  The text will 
be at different locations on the screen provided x1 ≠ x2  or y1 ≠ y2. 
 
If the default line-types used for graphing are not satisfactory, various symbols 
may be selected.  For example: 
 

plot(a1, b1, ’*’) 
 
draws a curve, a1 versus b1, using star(*) symbols, while 
 

plot(a1, b1, ’*’, a2, b2, ’+’) 
 
uses a star(*) for the first curve and the plus(+)  symbol for the second curve.  
Other print types are shown in Table 2.2. 
 

 Figure 2.3  Graph of Voltage versus Time of a Response of an RLC  
        Circuit 
 
 
For systems that support color, the color of the graph may be specified using 
the statement: 
 

plot(x, y, ’g’) 
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implying, plot x versus y using green color.  Line and mark style may be added 
to color type using the command 
 

plot(x, y, ’+w’) 
 
The above statement implies plot x versus y using white + marks.  Other colors 
that can be used are shown in Table 2.3. 
 

Table 2.2 
Print Types 

 
LINE-TYPES 
 

INDICATORS POINT 
TYPES 

INDICATORS 

solid - point . 
dash -- plus + 
dotted : star * 
dashdot -. circle o 
  x-mark x 

 
 

Table 2.3 
Symbols for Color Used in Plotting 

 
COLOR SYMBOL 
red r 
green g 
blue b 
white w 
invisible i 

 
 
The argument of the plot command can be complex.  If z is a complex vector, 
then plot(z) is equivalent to plot(real(z), imag(z)).   The following example 
shows the use of the plot,  title, xlabel, ylabel and text functions. 
 
 
Example 2.1 
 
For an R-L circuit,  the voltage v t( ) and current i t( )  are given as 
 

v t t
i t t

( ) cos( )
( ) cos( )

=

= +

10 377
5 377 600  
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Sketch  v t( )  and i t( ) for t = 0 to 20 milliseconds. 
 
Solution 
 
MATLAB Script 

 
% RL circuit 
% current i(t) and  voltage v(t) are generated;  t is time 
t = 0:1E-3:20E-3;  v  = 10*cos(377*t); 
a_rad = (60*pi/180);  % angle in radians 
i = 5*cos(377*t + a_rad); 
plot(t,v,'*',t,i,'o') 
title('Voltage and Current of an RL circuit') 
xlabel('Sec') 
ylabel('Voltage(V) and Current(mA)') 
text(0.003, 1.5, 'v(t)'); 
text(0.009,2, 'i(t)') 

 
 
Figure 2.4 shows the resulting graph.  The file ex2_1.m  is a script file for the 
solution of the problem. 
 

 
 

Figure 2.4  Plot of Voltage and Current of an RL Circuit under 
        Sinusoidal Steady State Conditions
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2.3 LOGARITHMIC AND POLAR PLOTS 
 
Logarithmic and semi-logarithmic plots can be generated using the commands 
loglog, semilogx, and semilogy.  The use of  the above plot commands is 
similar to those of the plot command discussed in  the previous section.  The 
description of these commands are as follows: 
 

loglog(x, y)  -  generates a plot of log10(x) versus log10(y) 
 
semilogx(x, y) -   generates a plot of log10(x) versus linear axis of y 
 
semilogy(x, y)  - generates a plot of linear axis of x versus log10(y) 

 
It should be noted that since the logarithm of negative numbers and zero does 
not exist, the data to be plotted on the semi-log axes or log-log axes should not 
contain zero or negative values. 
 
 
Example 2.2 
 
The gain versus frequency of a capacitively coupled amplifier is shown below.  
Draw a graph of gain versus frequency using a logarithmic scale for the 
frequency and a linear scale for the gain. 
 
 

Frequency 
(Hz) 

Gain (dB) Frequency 
(Hz) 

Gain (dB) 

20 5 2000 34 
40 10 5000 34 
80 30 8000 34 
100 32 10000 32 
120 34 12000 30 

 
 
Solution 
  
MATLAB Script 

 
% Bode plot for capacitively coupled amplifier 
f = [20 40 80 100 120 2000 5000 8000 10000 ... 
     12000 15000 20000]; 
g = [ 5 10 30 32 34 34 34 34 32 30 10 5]; 
semilogx(f, g) 
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title('Bode plot of an amplifier') 
xlabel('Frequency in Hz') 
ylabel('Gain in dB') 

 
The plot is shown in Figure 2.5.  The MATLAB script file is ex2_2.m.   
 

 
 

Figure 2.5  Plot of Gain versus Frequency of an Amplifier 
 
 
A polar plot of an angle versus magnitude may be generated using the 
command 
 

polar(theta, rho) 
 
where, 

theta and rho are vectors, with the theta being an angle in radians and 
rho being the magnitude.   
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When the grid command is issued after the polar plot command, polar grid 
lines will be drawn.  The polar plot command is used in the following example. 
 
 
Example 2.3 
 
A complex number z can be represented as z re j= θ .     The nth  power of  
the complex number is given as  z r en n jn= θ .    If r = 1.2 and  θ = 100 ,  use 

the polar plot to plot z n  versus  nθ  for n  = 1 to n  = 36. 

 
Solution 
 
MATLAB Script 

 
% polar plot of z 
r = 1.2;  theta = 10*pi/180;   
angle = 0:theta:36*theta;  mag = r.^(angle/theta); 
polar(angle,mag) 
grid 
title('Polar Plot') 

 
The polar plot is shown in Figure 2.6. 
 

 
 

Figure 2.6  Polar Plot of z en j n= 12 10.
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2.4 SCREEN CONTROL 
 
MATLAB has basically two display windows: a command window and a graph 
window.  The hardware configuration an operator is using will either display 
both windows simultaneously or one at a time.  The following commands can 
be used to select and clear the windows: 

 
shg         - shows graph window 
any key -   brings back command window 
clc          -    clears command window 
clg          - clears graph window 
home - home command cursor 

 
The graph window can be partitioned into multiple windows.  The subplot 
command allows one to split the graph window into two subdivisions or four 
subdivisions.  Two sub-windows can be arranged either top or bottom or left or 
right.  A four-window partition will have two sub-windows on top and two sub-
windows on the bottom.  The general form of the subplot command is 
 

subplot(i j k) 
 
The digits i and j specify  that the graph window is to be split into an  i-by- j 
grid of smaller windows.  The digit k specifies the k th  window for the current 
plot.  The sub-windows are numbered from left to right, top to bottom.  For 
example, 
 

% 
x = -4:0.5:4; 
y = x.^2; % square of x 
z = x.^3; % cube of x 
subplot(211), plot(x, y), title('square of x') 
subplot(212), plot(x, z), title('cube of x') 

 
will plot  y x= 2   in the top half of the graph screen and z x= 3  will be 
plotted on the bottom half of the graph screen.  The plots are shown in Figure 
2.7. 
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Figure 2.7  Plots of  x 2  and x3  using Subplot Commands. 
 
 
The coordinates of points on the graph window can be obtained using the 
ginput command.  There are two forms of the command: 
 

[x y]  = ginput 
 
[x y]  = ginput(n) 

 
• [x y] = ginput command allows one to select an unlimited number of 

points from the graph window using a mouse or arrow keys.  Pressing the 
return key terminates the input. 

 
• [x y] = ginput(n) command allows the selection of n points from the graph 

window using a mouse or arrow keys.  The points are stored in vectors x 
and y.   Data points are entered by pressing a mouse button or any key on 
the keyboard (except return key).  Pressing the return key terminates the 
input. 
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 EXERCISES  
 
2.1  The repulsive coulomb force that exists between two protons in the  
 nucleus of a conductor  is given as 

  F q q
r

= 1 2

0
24πε

 

If  q q x1 2
1916 10= = −. C, and 

1
4

8 99 10
0

9 2 2

πε
= . / ,x Nm C    

sketch a graph of force versus radius r.   Assume a radius from 
10 10 15. x − to 10 10 14. x − m with increments of   2 0 10 15. x −  m. 

 
 
2.2   The current flowing through a drain of a field effect transistor during  
 saturation is given as 
 
           i k V VDS GS t= −( )2  
 

If  Vt = 10.  volt and      k mA V= 2 5 2. / ,   plot the current iDS   
for the following values of  VGS : 1.5, 2.0, 2.5, ..., 5 V. 

 
 
2.3 Plot the voltage across a parallel RLC circuit given as 
 
  v t e tt( ) sin( )= 5 10002 π  
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2.4 Obtain the polar plot of    z r en jn= − θ  for θ   = 150 and  n  = 1 to  
 20. 
 
2.5 The table below shows the grades of three examinations of ten  
 students in a class. 
 

STUDENT EXAM #1 EXAM #2 EXAM #3 
1 81 78 83 
2 75 77 80 
3 95 90 93 
4 65 69 72 
5 72 73 71 
6 79 84 86 
7 93 97 94 
8 69 72 67 
9 83 80 82 
10 87 81 77 

 
 

(a)   Plot the results of each examination. 
 
(b)   Use MATLAB to calculate the mean and standard deviation of  

         each examination.  
 
 
2.6 A function f x( ) is given as 
  
  f x x x x x( ) = + + + +4 3 23 4 2 6  
 

(a)  Plot f x( )  and   
(b)  Find the roots of f x( )  

  
 
2.7 A message signal m(t) and the carrier signal c t( ) of a  
 communication system are, respectively: 
 

   
m t t t
c t t

( ) cos( ) cos( )
( ) cos( , )

= +
=

4 120 2 240
10 10 000

π π
π

 

 
A double-sideband suppressed carrier s t( )  is given as 
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s t m t c t( ) ( ) ( )=  

 
Plot m t c t( ), ( )  and s t( ) using the subplot command. 

 
 
2.8 The voltage v  and current I of a certain diode are related by the  
 expression 
 

i I v nVS T= exp[ / ( )]  
 

If  I S  = 10 10 14. x − A,   n  = 2.0 and VT = 26 mV, plot the current 
versus voltage curve of the diode for diode voltage between 0 and 0.6 
volts. 
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CHAPTER THREE 
 

CONTROL STATEMENTS 
 
 

3.1 FOR LOOPS 
 
“FOR” loops allow a statement or group of statements to be repeated a fixed 
number of times.  The general form of a for loop is 
 

for index = expression 
 statement group X 
end 

 
The expression is a matrix and the statement group X is repeated as many 
times as the number of elements in the columns of the expression matrix.  The 
index takes on the elemental values in the matrix expression.  Usually, the ex-
pression is something like 
 

m:n  or m:i:n 
 
where m is the beginning value, n the ending value,  and i is the increment. 
 
Suppose we would like to find the squares of all the integers starting from 1 to 
100.  We could  use the following statements to solve the problem: 
 

sum = 0; 
for i = 1:100 
    sum = sum + i^2; 
end  
sum 

 
For loops can be nested, and it is recommended that the loop be indented for 
readability.  Suppose we want to fill 10-by-20 matrix, b, with an element value 
equal to unity, the following statements can be used to perform the operation. 

 
% 
n = 10;  % number of rows 
m = 20;  % number of columns 
for i = 1:n 
     for j = 1:m 
          b(i,j) = 1; % semicolon suppresses printing in the loop 
     end 
end 
 

 

© 1999 CRC Press LLC 

 

© 1999 CRC Press LLC 



b  % display the result 
% 

 
It is important to note that each for statement group must end  with the word  
end.  The following program illustrates the use of a for loop. 
 
 
Example 3.1 
 
The horizontal displacement x t( ) and vertical displacement y t( ) are given 
with respect to time, t, as 
 

x t t
y t t
( )
( ) sin( )

=
=

2
 

 
For t = 0 to 10 ms, determine the values of x t( ) and y t( ) .  Use the values to 
plot x t( )  versus y t( ) . 
 
Solution: 
 
MATLAB Script 
 

%  
for i= 0:10 
     x(i+1) = 2*i; 
     y(i+1) = 2*sin(i); 
end 
plot(x,y) 

 
 
Figure 3.1 shows the plots of x t( ) and y t( ) . 
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Figure 3.1  Plot of x  versus y. 

 
 
 

3.2 IF STATEMENTS 
 
IF statements use relational or logical operations to determine what steps to 
perform  in the solution of a problem.  The relational operators in MATLAB 
for comparing two matrices of equal size are shown in Table 3.1. 
 

Table 3.1   
Relational Operators 

 
RELATIONAL 
OPERATOR 

MEANING 

< less than 
<= less than or equal 
> greater than 
>= greater than or equal 
== equal 
~= not equal 
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When any of the above relational operators are used, a comparison is done be-
tween the pairs of corresponding elements.  The result is a matrix of ones and 
zeros, with one representing TRUE and zero FALSE.  For example, if  

 
a = [1 2 3 3 3 6]; 
b = [1 2 3 4 5 6]; 
a == b 

 
The answer obtained is 
 

ans = 
          1     1     1     0     0     1 
 

 
The 1s indicate the elements in vectors a and b that are the same and 0s are the 
ones that are different. 
 
There are three logical operators in  MATLAB.  These are shown in Table 3.2. 
 

Table 3.2 
Logical Operators 

 
LOGICAL OPERATOR 
SYMBOL 

MEANING 

& and 
! or 
~ not 

 
 
Logical operators work element-wise and are usually used on 0-1 matrices, 
such as those generated by relational operators.   The & and ! operators com-
pare two matrices of equal dimensions.  If A and B are 0-1 matrices, then A&B 
is another 0-1 matrix with ones representing TRUE and zeros  FALSE.   The 
NOT(~) operator is a unary operator.  The expression ~C returns 1 where C is 
zero and 0 when C is nonzero. 
 
There are several variations of the IF statement:   

 
• simple if statement 
  
• nested if statement 
  
• if-else statement 
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• if-elseif statement 
  
• if-elseif-else statement. 

 
 
• The general form of the simple if statement is 
 

if logical expression 1 
  statement group 1 
end 

 
In the case of a simple if statement, if the logical expression1 is true, the state-
ment group 1 is executed.  However, if the logical expression is false, the 
statement group 1 is bypassed and the program control jumps to the statement 
that follows the end statement. 
 
• The general form of a nested if statement is 
 

if logical expression 1 
    statement group 1 
   if logical expression 2 
   statement group 2 
 end 
  statement group 3 
end 
statement group 4 

 
The program control is such that if expression 1 is true, then statement groups 
1 and 3 are executed.  If the logical expression 2 is also true, the statement 
groups 1 and 2 will be executed before executing statement group 3.  If logical 
expression 1 is false,  we  jump to statement group  4 without executing state-
ment groups 1, 2 and 3. 
 
• The if-else statement allows one to execute one set of statements if a 

logical expression is true and a different set of statements if the logical 
statement is false.  The general form of the if-else statement is 

 
if logical expression 1 
   statement group 1 
 else 
   statement group 2 
end 

 

 

© 1999 CRC Press LLC 

 

© 1999 CRC Press LLC 



In the above program segment, statement group 1 is executed if logical expres-
sion 1 is true.  However, if logical expression 1 is false, statement group 2 is 
executed. 
  
• If-elseif statement may be used to test various conditions before execut-

ing a set of statements.  The general form of the  if-elseif statement is 
 

if logical expression 1  
  statement group1 
 elseif logical expression 2 
  statement group2 
 elseif logical expression 3 
  statement group 3 
 elseif logical expression 4 
  statement group 4 
end 

 
A statement group is executed provided the logical expression above it is true.  
For example, if logical expression 1 is true, then statement group 1 is executed.  
If logical expression 1 is false and  logical expression 2 is true, then statement 
group 2 will be executed.  If logical expressions 1, 2 and 3 are false and logical 
expression 4 is true, then statement group 4 will be executed.  If none of the 
logical expressions is true, then statement groups 1, 2, 3 and 4 will not be exe-
cuted.  Only three elseif statements are used in the above example.  More elseif 
statements may be used if the application requires them. 
  
• If-elseif-else statement provides a group of statements to be executed if 

other logical expressions are false.  The general form of the if-elseif-else 
statement is 

 
if logical expression 1 
  statement group1 
 elseif logical expression 2 
  statement group 2 
 elseif logical expression 3 
  statement group 3 
 elseif logical expression 4 
  statement group4 
 else 
  statement group 5 
end  
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The various logical expressions are tested.  The one that is satisfied is exe-
cuted.  If  the logical expressions 1, 2, 3 and 4 are false, then statement group 5 
is executed.   Example 3.2 shows the use of the if-elseif-else statement. 
 
 
Example 3.2 
 
A 3-bit A/D converter, with an analog input x and digital output y, is repre-
sented by the equation: 
 

y = 0            x < -2.5 
   = 1 -2.5 ≤  x < -1.5 
   = 2 -1.5 ≤ x < -0.5 
   = 3 -0.5 ≤ x <  0.5 
   = 4  0.5 ≤  x <  1.5 
   = 5  1.5 ≤ x <   2.5 
   = 6  2.5 ≤ x <   3.5 
   = 7            x ≥   3.5 

 
Write a MATLAB program to convert analog signal x to  digital signal y.  Test 
the program by using an analog signal with the following amplitudes: -1.25,  
2.57 and 6.0. 
 
 
Solution 
 
MATLAB Script 
 

diary ex3_2.dat 
% 
y1 = bitatd_3(-1.25) 
y2 = bitatd_3(2.57) 
y3 = bitatd_3(6.0) 
diary 
 
function Y_dig = bitatd_3(X_analog) 
% 
% bitatd_3 is a function program for obtaining 
%         the digital value given an input analog 
%         signal 
% 
% usage:  Y_dig = bitatd_3(X_analog) 
%         Y_dig is the digital number (in integer form) 
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%         X_analog is the analog input (in decimal form) 
% 
if X_analog < -2.5 
   Y_dig = 0; 
elseif X_analog >= -2.5 & X_analog < -1.5 
   Y_dig = 1; 
elseif X_analog >= -1.5 & X_analog < -0.5 
   Y_dig = 2; 
elseif X_analog >= -0.5 & X_analog < 0.5 
   Y_dig = 3; 
elseif X_analog >= 0.5 & X_analog < 1.5 
   Y_dig = 4; 
elseif X_analog >= 1.5 & X_analog < 2.5 
   Y_dig = 5; 
elseif X_analog >= 2.5 & X_analog < 3.5 
   Y_dig = 6; 
else 
   Y_dig = 7; 
end 
Y_dig; 
end 

 
 
The function file, bitatd_3.m, is an m-file available in the disk that accompa-
nies this book.   In addition, the script file, ex3_2.m on the disk, can be used to 
perform this example.  The results obtained, when the latter program is exe-
cuted, are 
 

y1 = 
        2 
 
y2 = 
        6 
 
y3 = 
        7 

 
 
 

3.3 WHILE LOOP 
 
A WHILE  loop allows one to repeat a group of statements as long as a speci-
fied condition is satisfied.  The general form of the WHILE loop is 
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while expression 1 
 statement group 1 
end 
statement group 2 

 
When expression  1 is true, statement group 1 is executed.  At the end of exe-
cuting the statement group 1, the expression 1 is retested.  If expression 1 is 
still true, the statement group 1 is again executed.  However, if expression 1 is 
false, the program exits the while loop and executes statement group 2.   The 
following example illustrates the use of the while loop. 
 
 
Example 3.3 
 
Determine the number of consecutive integer numbers which when added to-
gether will give a value equal to or just less than 210. 
 
Solution 
 
MATLAB Script 
 

diary ex3_3.dat 
% integer summation 
int = 1; int_sum = 0; 
max_val = 210; 
while int_sum < max_val 
     int_sum = int_sum + int; 
     int = int + 1; 
end 
last_int = int 
if int_sum == max_val 
   num_int = int - 1 
   tt_int_ct =  int_sum 
  elseif int_sum  > max_val 
     num_int = int - 1 
     tt_int_ct = int_sum - last_int 
  end 
end  
diary 

 
The solution obtained will be 
 

last_int = 
                21 
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num_int = 
                 20 
 
tt_int_ct = 
                 210 

 
Thus, the number of integers starting from 1 that would add up to 210  is  20.  
That is, 
  1 2 3 4 20 210+ + + + + =...  
 
 
 

3.4 INPUT/OUTPUT COMMANDS 
 
MATLAB has commands for inputting information in the command window 
and outputting data.  Examples of input/output commands are echo, input, 
pause, keyboard, break, error, display, format, and fprintf.  Brief descriptions 
of these commands are shown in Table 3.3. 
 

Table 3.3 
Some Input/output Commands 

 
COMMAND 
 

DESCRIPTION 

break exits while or for loops 
disp displays text or matrix 
echo displays m-files during execution 
error displays error messages 
format switches output display to a particular 

format 
fprintf displays text and matrices and specifies 

format for printing values 
input allows user input 
keyboard invokes the keyboard as an m-file 
pause causes an m-file to stop executing.  Press-

ing any key cause resumption of program 
execution. 

 
Break 
  
The break command may be used to terminate the execution of  for and while 
loops.  If the break command exits in an innermost part of a nested loop, the  
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break command will exit from that loop only.  The break command is useful in 
exiting a loop when an error condition is detected. 
 
 
Disp 
  
The disp command displays a matrix without printing its name.  It can also be 
used to display a text string.  The general form of the disp command is 
 

disp(x) 
disp(‘text string’) 

 
disp(x) will display the matrix x.  Another way of displaying matrix x is to type 
its name.  This is not always desirable since the display will start with a leading 
“x  = ”.    Disp(‘text string’)   will display the text string in quotes.   For ex-
ample,  the MATLAB statement 
 

disp(‘3-by-3  identity matrix’) 
 
will result in 
 

3-by-3 identity matrix 
and  
  disp(eye(3,3)) 
 
will result in 
 

     1     0     0 
     0     1     0 
     0     0     1 

 
 
Echo 
 
The echo command can be used for debugging purposes.  The echo command 
allows commands to be viewed as they execute.  The echo can be enabled or 
disabled. 

 
echo on  - enables the echoing of commands 
echo off  - disables the echoing of commands 
echo -      by itself toggles the echo state 
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Error 
  
The error command causes an error return from the m-files to the keyboard 
and displays a user written message.  The general form of the command is 
 

error(‘message for display’) 
 
Consider the following MATLAB statements: 
 

x = input(‘Enter age of student’); 
if  x < 0 
 error(‘wrong age was entered, try again’) 
end 
x = input(‘Enter age of student’) 

 
For the above MATLAB statements, if the age is less that zero, the error mes-
sage ‘wrong age was entered, try again’ will be displayed and the user will 
again be prompted for the correct age. 
 
 
Format 
 
The format controls the format of an output.  Table 3.4 shows some formats 
available in MATLAB. 
 

Table 3.4 
Format Displays 

 
COMMAND 
 

MEANING 

format short 5 significant decimal digits 
format long 15 significant digits 
format short e scientific notation with 5 significant digits 
format long e scientific notation with 15 significant digits 
format hex hexadecimal 
format + + printed if value is positive, - if negative; space is 

skipped if value is zero 
 
 
By  default, MATLAB displays numbers in “short” format (5 significant dig-
its).  Format compact  suppresses line-feeds that appear between matrix dis-
plays, thus allowing more lines of information to be seen on the screen.  For- 
 
 

 

© 1999 CRC Press LLC 

 

© 1999 CRC Press LLC 



 

mat loose reverts to the less compact display.  Format compact and format 
loose do not affect the numeric format. 
 
 
fprintf 
 
The fprintf can be used to print both text and matrix values.  The format for 
printing the matrix can be specified, and line feed can also be specified.  The 
general form of this command is 
 

fprintf(‘text with format specification’, matrices) 
 
For example, the following statements 
  

cap = 1.0e-06; 
fprintf('The value of capacitance is %7.3e Farads\n', cap) 

 
when executed will yield the output 
 

The value of capacitance is 1.000e-006 Farads   
 
 
The format specifier %7.3e is used to show where the matrix value should be 
printed in the text.  7.3e indicates that the capacitance value should be printed 
with an exponential notation  of  7 digits, three of which should be decimal 
digits.  Other format specifiers are 
 

%f  - floating point 
%g - signed decimal number in either %e or  %f format,  

  whichever is shorter 
 
The text with format specification should end with \n to indicate the end of 
line.  However, we can also use \n to get line feeds as represented by the fol-
lowing example: 

 
r1 = 1500; 
fprintf('resistance is \n%f Ohms \n', r1) 

 
the output is 
 

resistance is  
1500.000000 Ohms  
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Input 
 
The input command displays a user-written text string on the screen, waits for 
an input from the keyboard, and assigns the number entered on the keyboard as 
the value of a variable.  For example, if one types the  command 
 

r = input(‘Please enter the four resistor values’); 
 
when the above command is executed, the text string ‘Please, enter the four 
resistor values’ will be displayed on the terminal screen.  The user can then 
type an expression such as   
 

[10 15 30 25]; 
 
The variable r will be assigned a vector [10 15 30  25].  If the user strikes the 
return key, without entering an input, an empty matrix will be assigned to r. 
  
To return a string typed by a user as a text variable, the input command may 
take the form 
 

x = input(‘Enter string for prompt’, ’s’) 
 
For example,  the command 
 

x = input(‘What is the title of your graph’, ’s’) 
 
when executed, will echo on the screen, ‘What is the title of your graph.’  The 
user can enter a string such as   ‘Voltage (mV) versus Current (mA).’ 
 
 
Keyboard 
  
The keyboard command invokes the keyboard as an m-file.  When the word 
keyboard  is placed in an m-file, execution of the m-file stops when the word 
keyboard is encountered.  MATLAB commands can then be entered.  The 
keyboard mode is terminated by typing the word, “return” and pressing the 
return key.  The keyboard command may be used to examine or change a vari-
able or may be used as a tool for debugging m-files. 
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Pause 
  
The pause command stops the execution of m-files.  The execution of the m-
file resumes upon pressing any key.  The general forms of the pause command 
are 
 

pause 
pause(n) 

 
Pause stops the execution of m-files until a key is pressed.  Pause(n) stops the 
execution of m-files for n seconds before continuing.  The pause command can 
be used to stop  m-files temporarily when plotting commands are encountered 
during program execution.  If pause is not used, the graphics are momentarily 
visible. 
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EXERCISES  
 
 
3.1   Write a MATLAB program to add all the even numbers from 0 to  
 100. 
 
 
3.2  Add all the terms in the series 
 

  1
1
2

1
4

1
8

+ + + + ...  

 
until the sum exceeds 1.995.  Print out the sum and the number of 
terms needed to just exceed the sum of 1.995. 
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3.3 The Fibonacci sequence is given as 
  
  1   1   2   3   5   8   13   21  34  … 
 
 Write a MATLAB program to generate the Fibonacci sequence up  
 to the twelfth term.  Print out the results. 
 
3.4 The table below shows the final course grade and its corresponding   
 relevant letter grade. 
 

LETTER GRADE FINAL COURSE GRADE 
A 90 < grade ≤ 100 
B 80 < grade ≤ 90 
C 70 < grade ≤ 80 
D 60 < grade ≤ 70 
F   grade ≤ 60 

 
 

For the course grades:  70, 85, 90, 97, 50, 60, 71, 83, 91, 86, 77, 45, 
67, 88, 64, 79, 75, 92,  and 69 

 
(a) Determine the number of students who attained the grade of A        
 and F. 
(b) What are the mean grade and the standard  deviation? 

 
 
3.5 Write a script file to  evaluate y[1],  y[2],  y[3] and y[4] for the 
 difference equation: 
 
  y n y n y n x n[ ] [ ] [ ] [ ]= − − − +2 1 2  
 

for n  ≥  0.  Assume that x n[ ] = 1  for  n  ≥  0,  y[ ]− =2 2   and  
y[ ]− =1 1. 

 
3.6 The equivalent impedance of a circuit is given as 

  Z jw jwL
jwCeq ( ) = + +100
1

 

 If L = 4 H and C = 1 µF, 

(a) Plot  Z jweq ( ) versus w.   (b) What is the minimum impedance? 

(c) With what frequency does the minimum impedance occur?  
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CHAPTER FOUR 
 

DC ANALYSIS 
 
 

4.1 NODAL ANALYSIS 
 
Kirchhoff’s current law states that for any electrical circuit, the algebraic sum 
of all the currents at any node in the circuit equals zero.  In nodal analysis,  if 
there are n nodes in a circuit, and we select a reference node, the other nodes 
can be numbered from V1 through Vn-1.  With one node selected as the refer-
ence node, there will be n-1 independent equations.  If we assume that the ad-
mittance between nodes i and j is given as Yij , we can write the nodal equa-
tions: 
 

Y11 V1 + Y12 V2 + …  + Y1m Vm =   ∑ I1 

 

 Y21 V1 + Y22 V2 + …  +  Y2m Vm =  ∑ I2 

 

 Ym1 V1 + Ym2 V2 + … +  Ymm Vm =   ∑ Im    
       

          (4.1) 
where 

m = n - 1 
 

V1, V2 and Vm are voltages from nodes 1, 2 and so on ..., n with re-
spect to the reference node. 

 

∑ Ix  is the algebraic sum of current sources at node x.   
 
Equation (4.1) can be expressed in matrix form as 
 
 [ ][ ] [ ]Y V I=       (4.2) 
 
The solution of the above equation is 
 

 [ ] [ ] [ ]V Y I= −1       (4.3) 
 
where  
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[ ]Y −1    is an inverse of  [ ]Y .   
 
In MATLAB, we can compute [V] by using the command 
 
 V inv Y I= ( ) *       (4.4) 
 
where 
 

inv Y( )  is the inverse of matrix Y  
 
The matrix left and right divisions can also be used to obtain the nodal volt-
ages.  The following MATLAB commands can  be used to find the matrix [V] 

 V I
Y=       (4.5) 

or 
 
 V Y I= \       (4.6) 
 
The solutions obtained from Equations (4.4) to (4.6) will be the same, pro-
vided the system is not ill-conditioned.  The following two examples illustrate 
the use of MATLAB for solving nodal voltages of electrical circuits. 
 
 
Example 4.1 
 
For the circuit shown below, find the nodal voltages V V1 2,  and V3 .  
 

5 A 2 A50 Ohms

40 Ohms10 Ohms

20 Ohms

V
VV

1
2

3

 
 Figure 4.1  Circuit with Nodal Voltages 
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 Solution 
 
Using KCL and assuming  that the currents leaving a node are positive,  we 
have 
 
For node 1, 
 

V V V V1 2 1 3

10 20
5 0− + − − =  

i.e.,  
 015 01 0 05 51 2 3. . .V V V− − =     (4.7) 
 
At node 2, 
 

V V V V V2 1 2 2 3

10 50 40
0− + + − =    

i.e., 
 − + − =01 0145 0 025 01 2 3. . .V V V    (4.8) 
 
At node 3, 
 

 
V V V V3 1 3 2

20 40
2 0− + − − =   

i.e.,   
 − − + =0 05 0 025 0 075 21 2 3. . .V V V    (4.9) 
   
 
In matrix form, we have 
 

 

015 01 0 05
01 0145 0 025

0 05 0 025 0 075

5
0
2

1

2

3

. . .
. . .

. . .

− −
− −

− −

































=
















V
V
V

   (4.10) 

 
   
The MATLAB program for solving the nodal voltages is 
 
MATLAB Script 

 
diary ex4_1.dat 
% program computes the nodal voltages 
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% given the admittance matrix Y and current vector I 
% Y is the admittance matrix and I is the current vector 
% initialize matrix y and vector I using YV=I form 
Y = [ 0.15    -0.1     -0.05; 
     -0.1      0.145   -0.025; 
     -0.05    -0.025    0.075]; 
I = [5; 
     0; 
     2]; 
% solve for the voltage 
fprintf('Nodal voltages V1, V2 and V3 are \n') 
v = inv(Y)*I 
diary 

 
 
The results obtained from MATLAB are 
 

Nodal voltages V1, V2 and V3,  
 
v = 
      404.2857 
      350.0000 
      412.8571 
  

 
Example 4.2: 
 
Find the nodal voltages of the circuit shown below. 
 

5 A 10 V

V
1

V
2

4V
V

3

20 Ohms 4 Ohms 10 Ohms

5 Ohms 15 Ohms

2 Ohms

10 Ix

 I x

 
 
 Figure 4.2  Circuit with Dependent and Independent Sources 
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Solution 
 
Using KCL and the convention that currents leaving a node is positive, we 
have  
 
At node 1 
 

 
V V V V V1 1 2 1 4

20 5 2
5 0+ − + − − =  

 
Simplifying, we get 
 
 0 75 0 2 0 5 51 2 4. . .V V V− − =     (4.11) 
 
At node 2, 
 
 V V I X2 3 10− =   
  
But  

I
V V

X =
−( )1 4

2
 

 
Thus  

V V
V V

2 3
1 410
2

− =
−( )

  

 
Simplifying, we get 
 
 -5 5 01 2 3 4V V V V+ − + =     (4.12)
      
 
From supernodes 2 and 3,  we have 
 

 
V V V V V V3 2 1 2 3 4

10 5 4 15
0+ − + + − =  

 
Simplifying, we get 
 
 − + + − =0 2 0 45 01667 0 06667 01 2 3 4. . . .V V V V   (4.13) 
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At node 4, we have   
 
 V4 10=       (4.14) 
 
In matrix form, equations (4.11) to (4.14) become 
 

 

0 75 0 2 0 0 5
5 1 1 5

0 2 0 45 01667 0 06667
0 0 0 1

5
0
0

10

1

2

3

4

. . .

. . . .

− −
− −

− −





































=



















V
V
V
V

 (4.15) 

 
 
The MATLAB program for solving the nodal voltages is  
 
MATLAB Script 

 
diary ex4_2.dat 
% this program computes the nodal voltages 
% given the admittance matrix Y and current vector I 
% Y is the admittance matrix 
% I is the current vector 
% initialize the matrix y and vector I using YV=I 
 
Y = [0.75   -0.2   0   -0.5; 
        -5      1  -1      5; 
       -0.2   0.45  0.166666667   -0.0666666667; 
        0      0   0      1]; 
 
% current vector is entered as a transpose of row vector 
I = [5   0   0   10]'; 
 
% solve for nodal voltage 
fprintf('Nodal voltages V1,V2,V3,V4 are \n') 
V = inv(Y)*I 
diary 

 
 
We obtain the following results. 

 
Nodal voltages V1,V2,V3,V4 are  
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V = 
      18.1107 
      17.9153  
     -22.6384  
      10.0000 

 
 
 

4.2  LOOP ANALYSIS 
 
Loop analysis is a method for obtaining loop currents. The technique uses Kir-
choff voltage law (KVL) to write a set of independent simultaneous equations.  
The Kirchoff voltage law states that the algebraic sum of all the voltages 
around any closed path in a circuit equals zero. 
 
In loop analysis, we want to obtain current from a set of simultaneous equa-
tions.  The latter equations are easily set up if the circuit can be drawn in pla-
nar fashion.  This implies that a set of simultaneous equations can be obtained 
if the circuit can be redrawn without crossovers. 
 
For a planar circuit with n-meshes, the KVL can be used to write equations for 
each mesh that does not contain a dependent or independent current source.  
Using KVL and writing equations for each mesh, the resulting equations will 
have the general form: 
 
 Z11I1 + Z12 I2 + Z13 I3 +  ... Z1n In =  ∑ V1 

 

 Z21 I1 + Z22 I2 + Z23 I3 + ... Z2n In =  ∑ V2 

 

 Zn1 I1 + Zn2 I2 + Zn3 I3 + ... Znn In =   ∑ Vn  
        (4.16) 
 
where 

 
 I1, I2, ... In are the unknown currents for meshes 1 through n. 
 

Z11, Z22, …, Znn are the impedance for each mesh through which indi-
vidual current flows. 

 
 Zij,   j # i denote mutual impedance. 
 
 ∑ Vx  is the algebraic sum of the voltage sources in mesh x. 
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Equation (4.16) can be expressed in matrix form as 
   
 [ ][ ] [ ]Z I V=       (4.17) 
 

where 
 

 Z

Z Z Z Z
Z Z Z Z
Z Z Z Z

Z Z Z Z

n

n

n

n n n nn

=























11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

...

...

...
.. .. . ... ..

...

 

 

 I

I
I
I

In

=























1

2

3

.
 

 
and 

 V

V
V
V

Vn

=























∑
∑
∑

∑

1

2

3

..
 

 
 
The solution to Equation (4.17) is 
 

 [ ] [ ] [ ]I Z V= −1
      (4.18) 

 
In MATLAB, we can compute [I] by using the command 
 
 I inv Z V= ( ) *       (4.19) 
 
 

 

© 1999 CRC Press LLC 

 

© 1999 CRC Press LLC 



where 
 inv Z( )  is the inverse of the matrix Z  
 
 
The matrix left and right divisions can also be used to obtain the loop currents.  
Thus, the current I can be obtained by the MATLAB commands 
 

 I V
Z=       (4.20) 

 
or  
 
 I Z V= \       (4.21)
   
 
As mentioned earlier, Equations (4.19) to (4.21) will give the same results, 
provided the circuit is not ill-conditioned.  The following examples illustrate 
the use of MATLAB for loop analysis. 
 
 
 
Example 4.3 
 
Use the mesh analysis to find the current flowing through the resistor RB .  In 
addition, find the power supplied by the 10-volt voltage source. 
 

10 V

  10 Ohms

  30 Ohms

I

R B 5 Ohms

15 Ohms

30 Ohms

 
 Figure 4.3a  Bridge Circuit 
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Solution 
 
Using loop analysis and designating the loop currents as I I I1 2 3, , , we obtain 
the following figure.  
 

10 V

  10 Ohms

  30 Ohms

5 Ohms

15 Ohms

30 Ohms

I 1 I 2

I 3

 
 Figure 4.3b    Bridge Circuit with Loop Currents 
 
 
Note that I I I= −3 2  and power supplied by the source  is P I=10 1  
 
The loop equations are 
 
Loop 1, 
              10 30 10 01 2 1 3( ) ( )I I I I− + − − =  
 
 40 10 30 101 2 3I I I− − =     (4.22) 
 
Loop 2, 

10 15 5 02 1 2 2 3( ) ( )I I I I I− + + − =    
 
 − + − =10 30 5 01 2 3I I I     (4.23) 
 
Loop 3,   

30 5 30 03 1 3 2 3( ) ( )I I I I I− + − + =   
 
 − − + =30 5 65 01 2 3I I I       (4.24) 
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In matrix form, Equations (4.22)  and (4.23) become 
 

 

40 10 30
10 30 5
30 5 65

10
0
0

1

2

3

− −
− −
− −

































=
















I
I
I

   (4.25) 

 
 
The MATLAB program for solving the loop currents I I I1 2 3, , , the current I  
and the power supplied by the  10-volt source is 
 
MATLAB Script 
 

diary ex4_3.dat 
% this program determines the current 
% flowing in a resistor RB and power supplied  by source 
% it computes the loop currents given the impedance 
% matrix Z and voltage vector V 
% Z is the impedance matrix 
% V is the voltage matrix 
% initialize the matrix Z and vector V 
 
Z = [40   -10   -30; 
    -10    30    -5; 
    -30    -5    65]; 
 
V = [10  0  0]'; 
 
% solve for the loop currents 
I = inv(Z)*V; 
% current through RB is calculated 
IRB = I(3) - I(2); 
fprintf('the current through R is %8.3f Amps \n',IRB) 
% the power supplied by source is calculated 
PS = I(1)*10; 
fprintf('the power supplied by 10V source is %8.4f watts \n',PS) 
diary 

 
MATLAB  answers are 

 
the current through R is    0.037 Amps  
the power supplied by 10V source is   4.7531 watts  
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Circuits with dependent voltage sources can be analyzed in a manner similar to 
that of example 4.3.  Example 4.4 illustrates the use of KVL and MATLAB to 
solve loop currents. 
 
 
 
Example 4.4 
 
Find the power dissipated by the 8 Ohm resistor and the current supplied by 
the 10-volt source.  

Is

10 V
  20 Ohms

6 ohms 15 Ohms
5 V

10 ohms

6 Ohms

4 Is

 
 
 Figure 4.4a  Circuit for Example 4.4 
 
 
Solution 
 
Using loop analysis and denoting the loop currents as I I1 2,  and I3 , the cir-
cuit can be redrawn as 
 

I 1

10 V
  20 Ohms

6 Ohms 15 Ohms
5 V

10 Ohms

6 Ohms

  8 Ohms

4 Is

I
I

2
3

 
 
 Figure 4.4b    Figure 4.4 with Loop Currents 
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By inspection,  
 

I IS = 1       (4.26) 
 
For loop 1, 
 

− + + − =10 6 20 01 1 2I I I( )   
 
 26 20 101 2I I− =      (4.27) 
 
For loop 2, 
 
 15 5 6 4 20 02 2 3 2 1I I I I I IS− + − + + − =( ) ( )   
 
Using Equation (4.26), the above expression simplifies to 
 
 − + − =16 41 6 51 2 3I I I     (4.28) 
         
For loop 3, 
 
 10 8 4 6 03 3 3 2I I I I IS+ − + − =( )   
 
Using Equation (4.26), the above expression simplifies to 
 
 − − + =4 6 24 01 2 3I I I     (4.29) 
 
Equations (4.25) to (4.27) can be expressed in matrix form as 
 

 

26 20 0
16 41 6
4 6 24

10
5
0

1

2

3

−
− −
− −

































=
















I
I
I

   (4.30) 

 
The power dissipated by the 8 Ohm resistor is 
 
  P RI I= =3

2
3
28   

 
The current supplied by the source  is I IS = 1  
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A MATLAB program for obtaining the power dissipated by the 8 Ohm resistor 
and the current supplied by the source is shown below 
 
MATLAB Script 
 

diary ex4_4.dat 
% This program determines the power dissipated by 
% 8 ohm resistor and current supplied by the  
% 10V source 
% 
% the program computes the loop currents, given 
% the impedance matrix Z and voltage vector V 
% 
% Z is the impedance matrix 
% V is the voltage vector 
% initialize the matrix Z and vector V of equation 
% ZI=V 
 
Z = [26    -20    0; 
    -16     40   -6; 
     -4     -6   24]; 
V = [10   5   0]'; 
 
% solve for loop currents 
I = inv(Z)*V; 
% the power dissipation in 8 ohm resistor is P 
P = 8*I(3)^2; 
% print out the results 
fprintf('Power dissipated in 8 ohm resistor is %8.2f Watts\n',P) 
fprintf('Current in 10V source is %8.2f Amps\n',I(1)) 
diary 

 
MATLAB results are 

 
Power dissipated in 8 ohm resistor is     0.42  Watts 
Current in 10V source is     0.72 Amps 

 
 
For circuits that contain both current and voltage sources, irrespective of 
whether they are dependent sources, both KVL and KVL can be used to obtain 
equations that can be solved using MATLAB.  Example 4.5 illustrates one 
such circuit. 
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Example 4.5 
 
Find the nodal voltages in the circuit, i.e., V V V1 2 5, , ...,  

5 V b   2 Ohms

V
1

V

V

V

2

4
3

  4 Ohms

24 V
5 A

5 Ohms

10 Ohms

8 Ohms

V5

10 I

Vb

Ia

a

 
 
 Figure 4.5  Circuit for Example 4.5 
 
 
Solution 
 
By inspection,  
 
 V V Vb = −1 4       (4.31) 
 
Using Ohm’s Law 
 

 I V V
a = −4 3

5
      (4.32) 

 
Using KCL at node 1, and supernode 1-2, we get 
 

 
V V V V V V

b
1 1 4 2 3

2 10
5

8
0+ − − + − =    (4.33) 

 
Using Equation (4.31), Equation (4.33) simplifies to 
 

 

© 1999 CRC Press LLC 

 

© 1999 CRC Press LLC 



 − + − + =4 4 0125 0125 4 9 01 2 3 4. . . .V V V V    (4.34) 
 
Using KCL at node 4, we have 
 

 
V V V V V V4 5 4 3 4 1

4 5 10
10− + − + − =  

This simplifies to 
 
 − − + − =01 0 2 0 55 0 25 01 3 4 5. . . .V V V V    (4.35) 
 
Using KCL at node 3, we get 
 

 
V V V V3 4 3 2

5 8
5 0− + − − =  

 
which simplifies to 
 
 − + − =0125 0 325 0 2 52 3 4. . .V V V    (4.36) 
 
Using KVL for loop 1, we have 
 
 − + + + + =10 5 8 5 0I V I Ia b a a( )    (4.37) 
 
Using Equations (4.31) and (4.32), Equation (4.37) becomes 
 
 − + + + + =10 5 8 40 0I V I Ia b a a    
i.e., 
 3 40I Va b+ = −   
 
Using Equation (4.32), the above expression simplifies to 
 

 3
5

404 3
1 4

V V V V− + − = −  

Simplifying the above expression, we get 
 
 V V V1 3 40 6 0 4 40− − = −. .     (4.38) 
 
By inspection 
 
 VS = 24       (4.39) 
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Using Equations (4.34), (4.35), (4.36), (4.38) and (4.39), we get the matrix  
equation  
 

− −
− − −

− −
− −













































=
−























4 4 0125 0125 4 9 0
01 0 2 0 0 55 0 25
0 0125 0 325 0 2 0
1 0 0 6 0 4 0
0 0 0 0 1

0
0
5
40

24

1

2

3

4

5

. . . .
. . . .

. . .
. .

V
V
V
V
V

  (4.40)                             

     
 
The MATLAB program for obtaining the nodal voltages is shown below. 
 
MATLAB Script 
 

diary ex4_5.dat 
% Program determines the nodal voltages 
%  given an admittance matrix Y and  current vector I 
% Initialize matrix Y and the current vector I of 
% matrix equation Y V = I 
Y = [-4.4  0.125  -0.125  4.9  0; 
     -0.1  0      -0.2    0.55  -0.25; 
      0    -0.125  0.325  -0.2   0; 
      1    0      -0.6    -0.4   0; 
      0    0       0       0     1]; 
I = [0  0  5  -40  24]'; 
%  Solve for the nodal voltages  
fprintf('Nodal voltages V(1), V(2), .. V(5) are \n') 
V = inv(Y)*I; diary 

 
The results  obtained from MATLAB are 
 

Nodal voltages V(1), V(2), ... V(5) are  
 
V = 
      117.4792 
      299.7708 
      193.9375 
      102.7917 
        24.0000 
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4.3 MAXIMUM POWER TRANSFER  
 
 
Assume that we have a voltage source VS  with resistance RS  connected to a 
load RL .   The circuit is shown in Figure 4.6. 

       

Vs

Rs

LR
V

L

 
Figure 4.6   Circuit for Obtaining Maximum Power Dissipation 

 
 
The voltage across the Load RL  is given as 

 V V R
R RL

s L

s L

=
+

      

  
The power dissipated by the load RL is given as 
 

 P V
R

V R
R RL

L

L

s L

s L

= =
+

2 2

2( )
    (4.41) 

 
The value of RL  that dissipates the maximum power is obtained by differenti-
ating PL  with respect to RL ,  and equating the derivative to zero.  That is, 
 

 

dP
dR

R R V V R R R
R R

dP
dR

L

L

s L S s L s L

s L

L

L

= + − +
+

=

( ) ( )( )
( )

2 2

4

2

0
  (4.42) 
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Simplifying the above we get 
 
 ( )R R Rs L L+ − =2 0  
i.e., 
 R RL S=       (4.43) 
 
Thus, for a resistive network, the maximum power is supplied to a load pro-
vided the load resistance is equal to the source resistance.   When RL  = 0, the 
voltage across and power dissipated by RL  are zero.  On the other hand, when 
RL  approaches infinity, the voltage across the load is maximum, but the 
power dissipation is zero.  MATLAB can be used to observe the voltage across  
and power dissipation of  the load as functions of load resistance value.  Ex-
ample 4.6 shows the use of MATLAB to plot the voltage and display the 
power dissipation of  a resistive circuit. 
 
Before presenting  an example on the maximum power transfer theorem, let us 
discuss the MATLAB functions diff and find. 
 
 
 
4.3.1 MATLAB  Diff and Find Functions 
 
Numerical differentiation can be obtained using the backward difference ex-
pression 
 

 ′ =
−
−

−

−

f x
f x f x

x xn
n n

n n
( )

( ) ( )1

1
    (4.44) 

 
or by the forward difference expression 
 

 ′ =
−
−

+

+

f x
f x f x

x xn
n n

n n
( )

( ) ( )1

1
    (4.45) 

  
The derivative of f x( )  can be obtained by using the MATLAB diff function 
as 
 
 ′ ≅f x diff f diff x( ) ( )./ ( ).     (4.46) 
 
If  f  is a row or column vector 
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 f f f f n= [ ( ) ( ) ... ( )]1 2  
 
then diff(f) returns a vector of difference between adjacent elements 
 
diff f f f f f f n f n( ) [ ( ) ( ) ( ) ( ) ... ( ) ( )]= − − − −2 1 3 2 1
        (4.47) 
 
The output vector diff f( )  will be one element less than the input vector f .  
 
 
 
The find function  determines the  indices of the nonzero elements of a vector 
or matrix.  The statement  
 
 B = find( f )      (4.48) 
 
will return the indices of the vector f  that are nonzero.  For example, to ob-
tain the points where a change in sign occurs, the statement 
 
 
 Pt_change = find(product < 0)    (4.49) 
 
 
will show the indices of the locations in product  that are negative.  
 
 
The diff and find  are used in the following example to find  the value of resis-
tance at which the  maximum power transfer occurs. 
 
 
 
Example 4.6  
 
In Figure 4.7, as RL  varies from 0 to 50KΩ, plot the power dissipated by the 
load.  Verify that the maximum power dissipation by the load occurs when RL  
is 10 KΩ. 
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 10 V

10,000 Ohms

LR
V

LPL

 
Figure 4.7    Resistive Circuit for Example 4.6 

 
 
Solution 
 
MATLAB Script 

 
% maximum power transfer 
% vs is the supply voltage 
% rs is the supply resistance 
% rl is the load resistance 
% vl is the voltage across the load 
% pl is the power dissipated by the load 
vs = 10;    rs = 10e3; 
rl = 0:1e3:50e3; 
k = length(rl); % components in vector rl 
% Power dissipation calculation 
for i=1:k 
  pl(i) = ((vs/(rs+rl(i)))^2)*rl(i); 
end 
% Derivative of power is calculated using backward difference 
dp = diff(pl)./diff(rl); 
rld = rl(2:length(rl)); % length of rld is 1 less than that of rl 
% Determination of critical points of derivative of power 
prod = dp(1:length(dp) - 1).*dp(2:length(dp)); 
crit_pt = rld(find(prod < 0)); 
max_power = max(pl); % maximum power is calculated 
% print out results 
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fprintf('Maximum power occurs at %8.2f Ohms\n',crit_pt) 
fprintf('Maximum power dissipation is %8.4f Watts\n', max_power) 
% Plot power versus load 
plot(rl,pl,'+') 
title('Power delivered to load') 
xlabel('load resistance in Ohms') 
ylabel('power in watts') 

 
The results obtained from MATLAB are 
 

Maximum power occurs at 10000.00 Ohms 
Maximum power dissipation is   0.0025 Watts 

 
 
The plot of the power dissipation obtained from MATLAB is shown in Figure 
4.8.  
 

 
   

Figure 4.8  Power delivered to load 
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EXERCISES  
 
4.1 Use loop analysis to write equations for the circuit shown in Figure 
 P4.1. Determine the current I  using MATLAB. 
 

10 V

6 Ohms

4 Ohms

8 Ohms

2 Ohms

15 Ohms

6 Ohms

I

 
 Figure P4.1   Circuit for Exercise 4.1 
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4.2 Use nodal analysis to solve for the nodal voltages for the circuit 
  shown in Figure P4.2.  Solve the equations using MATLAB. 

 

  4 Ohms

2 Ohms

  5 Ohms

3 Ohms

8 Ohms

  6 Ohms
  3 A

  4 A   6 A

V2

V4

V5

V3V1

 
 Figure P4.2   Circuit for Exercise 4.2 
 
 
4.3 Find the power dissipated by the 4Ω resistor and the voltage V1 . 

  4 Ohms   2 Ohms
 3 Vy

10 v

 4 Ohms

2 Ohms

6 I

8 A

    Vy

x

 I x

    V o

 
 
 Figure P4.3    Circuit for Exercise 4.3 
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4.4 Using both loop and nodal analysis, find the power delivered by a
 15V source. 

 

 4 Ohms  5 Ohms

2 Ohms

8 Ohms
4 V a

10 I x
 15 V

2 A

     I x

Va

 
  

Figure P4.4   Circuit  for Exercise 4.4 
 
 
4.5 As RL  varies from 0 to 12 in increments of 2Ω, calculate the power 

dissipated by RL .   Plot the power dissipation with respect to the 
variation in RL .   What is the maximum power  dissipated by RL ?  
What is the value of RL  needed for maximum power dissipation? 
 

12 V

3 Ohms

6 Ohms

2 Ohms

12 Ohms

3 Ohms

RL

36 V

 
 
 Figure P4.5   Circuit for Exercise 4.5 
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4.6 Using loop analysis and MATLAB, find the loop currents.  What  
 is the power supplied by the source? 
 

3 Ohms 4 Ohms

2 Ohms 2 Ohms

 2 Ohms  4 Ohms

 2 Ohms 4 Ohms

 4 Ohms  3 Ohms

6 V

6 V

I1 I2

I3 I4

 
 
 Figure P4.6    Circuit for Exercise 4.6 
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CHAPTER FIVE 
 

TRANSIENT ANALYSIS 
 
 

5.1  RC NETWORK 
 
 
Considering  the RC Network shown in Figure 5.1, we can use KCL to write 
Equation (5.1). 
 

 

R C Vo(t)

 
 
  Figure 5.1 Source-free RC Network 
 
 

 C dv t
dt

v t
R

o o( ) ( )+ = 0      (5.1) 

 
i.e., 
 

 
dv t

dt
v t
CR

o o( ) ( )+ = 0      

 
If  Vm  is the initial voltage across the capacitor, then the solution to Equation 
(5.1) is 

 v t V em

t
CR

0 ( ) =
−



      (5.2) 

 
where 
 CR is the time constant 
 
Equation (5.2) represents the voltage across a discharging capacitor.  To obtain 
the voltage across a charging capacitor, let us consider Figure 5.2. 
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Vo(t)

R

CVs

 
 
 Figure 5.2   Charging of a Capacitor 
 
 
Using KCL, we get 
 

 C dv t
dt

v t V
R

o o s( ) ( )+ − = 0     (5.3)

       
If the capacitor is initially uncharged,  that is v t0 ( )  =  0 at  t  = 0, the solution 
to Equation (5.3) is given as  
 

 v t V eS

t
CR

0 1( ) = −










−




     (5.4) 

   
Examples 5.1 and 5.2 illustrate the use of MATLAB for solving problems 
related to RC Network. 
 
 
Example  5.1 
 
Assume that for Figure 5.2  C = 10 µF, use  MATLAB to plot the voltage 
across the capacitor if R is equal to (a) 1.0 kΩ,  (b) 10 kΩ  and (c) 0.1 kΩ. 
 
Solution 
 
MATLAB Script 
 

% Charging of an RC circuit 
% 
c = 10e-6; 
r1 = 1e3; 
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tau1 = c*r1; 
t = 0:0.002:0.05; 
v1 = 10*(1-exp(-t/tau1)); 
r2 = 10e3; 
tau2 = c*r2; 
v2 = 10*(1-exp(-t/tau2)); 
r3 = .1e3; 
tau3 = c*r3; 
v3 = 10*(1-exp(-t/tau3)); 
plot(t,v1,'+',t,v2,'o', t,v3,'*') 
axis([0 0.06 0 12]) 
title('Charging of a capacitor with three time constants') 
xlabel('Time, s') 
ylabel('Voltage across capacitor') 
text(0.03, 5.0, '+ for R = 1 Kilohms') 
text(0.03, 6.0, 'o for R = 10 Kilohms') 
text(0.03, 7.0, '* for R = 0.1 Kilohms') 
 

Figure 5.3 shows the charging curves. 
 
 

 
 
 Figure 5.3  Charging of Capacitor 
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From Figure 5.3, it can be seen that as the time constant is small, it takes a 
short  time for the capacitor to  charge up. 
 
 
Example 5.2 
 
For Figure 5.2, the input voltage is a rectangular pulse with an amplitude of 5V 
and a width of 0.5s.  If  C = 10 µF, plot the output voltage, v t0 ( ) , for 
resistance R equal to (a) 1000 Ω,  and  (b) 10,000 Ω.   The plots should start 
from zero seconds and end at 1.5 seconds. 
 
 
Solution 
 
MATLAB Script 
 

%  The problem will be solved using a function program rceval 
function [v, t] = rceval(r, c) 
% rceval is a function program for calculating 
%        the output voltage given the values of  
%        resistance and capacitance. 
% usage [v, t] = rceval(r, c) 
%       r is the resistance value(ohms) 
%       c is the capacitance value(Farads) 
%       v is the output voltage 
%       t is the time corresponding to voltage v 
tau  = r*c; 
for i=1:50 
    t(i) = i/100; 
    v(i) = 5*(1-exp(-t(i)/tau)); 
end 
vmax = v(50); 
 
for i = 51:100 
    t(i) = i/100; 
    v(i) = vmax*exp(-t(i-50)/tau); 
end 
end 
 
% The problem will be solved using function program 
% rceval 
% The output is obtained for the various resistances 
c = 10.0e-6; 
r1 = 2500; 
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[v1,t1] = rceval(r1,c); 
r2 = 10000; 
[v2,t2] = rceval(r2,c); 
 
% plot the voltages 
plot(t1,v1,'*w', t2,v2,'+w') 
axis([0 1 0 6]) 
title('Response of an RC circuit to pulse input') 
xlabel('Time, s') 
ylabel('Voltage, V') 
text(0.55,5.5,'* is for 2500 Ohms') 
text(0.55,5.0, '+ is for 10000 Ohms') 

 
 

Figure 5.4 shows the charging and discharging  curves. 
  
 

 
 
 Figure 5.4  Charging and Discharging of a Capacitor with Different  
        Time Constants 
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5.2 RL NETWORK 
 
Consider the RL circuit shown in Figure 5.5. 

  

L

R Vo(t)

i(t)

 
 
 Figure 5.5 Source-free RL Circuit 
 
 
Using the KVL, we get 
 

 L di t
dt

Ri t( ) ( )+ = 0      (5.5)

  
If the initial current flowing through the inductor is Im , then the solution to 
Equation (5.5) is  
 

 i t I em

t

( ) =
−



τ       (5.6) 

 
where 
 

 τ = L
R       (5.7) 

 
 
Equation (5.6) represents the current response of a source-free RL circuit with 
initial current Im , and it represents the natural response of an RL circuit. 
 
Figure 5.6 is an RL circuit with source voltage v t VS( ) = . 
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VR(t)

L

R
i(t)

V(t)

 
 Figure 5.6  RL Circuit with a Voltage Source 
 
 
Using KVL, we get 
 

 L
di t

dt
Ri t VS

( )
( )+ =      (5.8)

   
If the initial current flowing through the series circuit is zero, the solution of 
Equation (5.8) is 
 

 i t
V
R

eS
Rt
L( ) = −











−




1      (5.9) 

 
The voltage across the resistor is 
 
 v t Ri tR ( ) ( )=  

             = V eS

Rt
L1−











−




                                 (5.10) 

 
The voltage across the inductor is  
 
 v t V v tL S R( ) ( )= −  
 

                         =
−



V eS

Rt
L     (5.11) 

 
The following example illustrates the use of MATLAB for solving RL circuit 
problems.
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Example 5.3 
 
For the sequential circuit shown in Figure 5.7, the current flowing through the 
inductor is zero. At  t =  0, the switch moved from position a to b, where it 
remained for 1 s.  After the 1 s delay, the switch moved from position b to 
position c, where it remained indefinitely.   Sketch the current flowing through 
the inductor versus time. 
 

           

40V

50 Ohms

150 Ohms

200 H

50 Ohms

a
b

c

 
 Figure 5.7   RL Circuit for Example 5.3 
 
Solution 
 
For 0 < t <  1 s, we can use Equation  (5.9) to find the current 
 

 i t e
t

( ) .= −












−








0 4 1 1τ      (5.12) 

where 
 

 τ1
200

100 2= = =L
R s 

 
At  t =  1 s 
 

 ( )i t e( ) . .= − −0 4 1 0 5      (5.13) 

          =  Imax  
 
For t >  1 s, we can use Equation (5.6) to obtain the current 
 

 i t I e
t

( ) max

.

=
−

−









0 5

2τ      (5.14)
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where 

 τ 2
2

200
200 1= = =L

Req
  s 

   
 
The MATLAB program for plotting   i t( )  is shown below. 
 
MATLAB Script 

 
% Solution to Example 5.3 
% tau1 is time constant when switch is at b 
% tau2 is the time constant when the switch is in position c 
%  
 
tau1 = 200/100; 
 
for k=1:20 
  t(k) = k/20; 
  i(k) = 0.4*(1-exp(-t(k)/tau1)); 
end 
 
imax = i(20); 
tau2 = 200/200; 
for k = 21:120 
  t(k) = k/20; 
  i(k) = imax*exp(-t(k-20)/tau2); 
end 
 
% plot the current 
plot(t,i,'o') 
axis([0 6 0 0.18]) 
title('Current of an RL circuit') 
xlabel('Time, s') 
ylabel('Current, A') 

 
 
Figure 5.8 shows the current i t( ) . 
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 Figure 5.8  Current Flowing through Inductor 
 
 
 

5.3  RLC CIRCUIT 
 
 
For the series RLC circuit shown in Figure 5.9, we can  use KVL to obtain  
the Equation (5.15). 

Vo(t)

L

RVs(t) = Vs

i(t)

  Figure 5.9   Series RLC Circuit 
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 v t L
di t

dt C
i d Ri tS

t

( )
( )

( ) ( )= + +
−∞
∫

1
τ τ    (5.15) 

Differentiating the above expression, we get 
 

 
dv t

dt
L

d i t
dt

R
di t

dt
i t
C

S ( ) ( ) ( ) ( )
= + +

2

2  

 
i.e., 
 

 
1 2

2L
dv t

dt
d i t

dt
R
L

di t
dt

i t
LC

S ( ) ( ) ( ) ( )
= + +    (5.16) 

 
The homogeneous solution can be found by making  v tS ( )  = constant, thus 
 

 0
2

2= + +d i t
dt

R
L

di t
dt

i t
LC

( ) ( ) ( )
    (5.17) 

 
The characteristic equation is  
 
 0 2= + +λ λa b      (5.18) 
 
where 

 a R
L=     and  

 

b LC= 1   
 
The roots of the characteristic equation can be determined.  If we assume that 
the roots are 
 
 λ α β= ,  
 
then,  the solution to the homogeneous solution is 
 
 i t A e A eh

t t( ) = +1 2
1 2α α      (5.19) 

 
where 
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 A1  and A2  are constants. 
 
If v tS ( )  is a constant, then the forced solution will also be a constant and be 
given as  
   
 i t Af ( ) = 3       (5.20) 
 
The total solution is given as  
 
 i t A e A e At t( ) = + +1 2 3

1 2α α     (5.21) 
 
where  
 

A1 ,  A2 ,  and A3   are obtained from initial conditions. 
 
Example 5.4 illustrates the use of MATLAB for finding  the roots of  
characteristic equations.  The MATLAB function roots, described in Section 
6.3.1, is used to obtain the roots of characteristic equations. 
 
 
 
Example 5.4 
 
For the series RLC circuit shown in Figure 5.9, If L = 10 H,  R = 400 Ohms 

and  C = 100µF,  v tS ( )  = 0, i( )0 4= A  and
di

dt
( )0 15=  A/s, find  i t( ) . 

 
Solution 
 
Since  v tS ( ) = 0, we use Equation (5.17) to get 
 

 0 400
10

1000
2

2= + +d i t
dt

di t
dt

i t( ) ( ) ( )  

 
The characteristic equation is 
 
 0 40 10002= + +λ λ  
 
The MATLAB function roots is  used to obtain the roots of the characteristics 
equation. 
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MATLAB Script 
 

 p = [1 40 1000]; 
 lambda = roots(p) 
 
lambda = 
                -20.0000 +24.4949i 
                -20.0000 -24.4949i 

 
 
Using the roots obtained from MATLAB,  i t( )  is given as 
 
 i t e A t A tt( ) ( cos( . ) sin( . )= +−20

1 224 4949 24 4949  
 
 i e A A A( ) ( ( ))0 0 40

1 2 1= + ⇒ =−    

[ ]
[ ]

di t
dt

e A t A t

e A t A t

t

t

( )
cos( . ) sin( . )

. sin( . ) . cos( . )

= − + +

− +

−

−

20 24 4949 24 4949

24 4949 24 4949 24 4949 24 4949

20
1 2

20
1 2

 

 
   

 
di

dt
A A

( )
.

0
24 4949 20 152 1= − =   

 
Since A1 4= , A2 38784= .  
 

 [ ]i t e t tt( ) cos( . ) . sin( . )= +−20 4 24 4949 38784 24 4949  
   
 
Perhaps the simplest way to obtain voltages and currents in an RLC circuit is to 
use Laplace transform.  Table 5.1 shows Laplace transform pairs that are 
useful for solving RLC circuit problems.  
  
 
From the RLC circuit,  we write differential equations  by  using network 
analysis tools.  The differential equations are converted into algebraic 
equations using the Laplace transform.  The unknown current or voltage is  
then solved in the s-domain.  By using an inverse Laplace transform, the 
solution can be expressed in the time domain.  We will illustrate this method 
using Example 5.5 
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Table 5.1 
Laplace Transform Pairs 

 

  
f (t) 
 

 
f(s) 

 
1 
 

 
1                              

1
s

                                 s>0 

 
2 
 

 
t 

1
2s

                               s>0 

 
3 
 

 

t n
 

n
sn

!
+1                              s>0 

 
4 
 

 

e at−
 

1
s a+

                           s>a 

 
5 
 

 

te at−
 

1
2( )s a+

                        s>a 

 
6 

 

sin( )wt  
w

s w2 2+
                     s>0 

 

 
7 

 

cos( )wt  
s

s w2 2+
                       s>0 

 

 
8 

 

e wtat sin( )  
w

s a w( )+ +2 2
 

 
9 

 

e wtat cos( )  
s a

s a w
+

+ +( )2 2  

 

 
10 

df
dt

 sF s f( ) ( )− +0  
 

 
11 

 

f d
t

( )τ τ
0∫  

 

F s
s
( )

 

 
12 

 
f t t( )− 1

 

 

e F st s− 1 ( )  
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Example 5.5 
 
The switch in Figure 5.10 has been opened for a long time.  If the switch opens 
at t = 0,  find the voltage v t( ) .    Assume that  R = 10 Ω, L = 1/32 H,  
C = 50µF and I AS = 2 .  

 

R C LIs V(t)

t = 0

+

-

 
 Figure 5.10   Circuit for Example 5.5 
 
 
At t < 0, the voltage across the capacitor is  
 
 vC ( ) ( )( )0 2 10 20= =  V 
  
In addition, the current flowing through the inductor 
 
 iL ( )0 0=  
 
At   t > 0, the switch closes and all the four elements of Figure 5.10 remain in 
parallel.  Using KCL,  we get 
 

 I
v t
R

C
dv t

dt L
v d iS

t

L= + + +∫
( ) ( )

( ) ( )
1

0
0

τ τ  

 
Taking the Laplace transform of the above expression,  we get 
 

 
I
s

V s
R

C sV s V
V s

sL
i

s
S

C
L= + − + +

( )
[ ( ) ( )]

( ) ( )
0

0
 

 
Simplifying the above expression, we get 
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3 Ohms 4 Ohms

2 Ohms 2 Ohms

 2 Ohms  4 Ohms

 2 Ohms 4 Ohms

 4 Ohms  3 Ohms

6 V

6 V

I1 I2

I3 I4

 

For  I S   = 2A, C = 50µ F, R = 10Ω, L = 1/32 H, V s( )  becomes 

 V s s
s s

( )
*

= +
+ +

40000 20
2000 64 102 4  

 V s s
s s

A
s

B
s

( )
( )( ) ( ) ( )

= +
+ +

=
+

+
+

40000 20
1600 400 1600 400

  

 A V s s
s
Lim= +
→ −1600

1600( )( ) =  -6.67 

 B V s s
s
Lim= +
→ −400

400( )( )    =  26.67 

 v t e et t( ) . .= − +− −6 67 26 671600 400  

The plot of v t( )  is shown in Figure 5.13. 

 

5.4 STATE VARIABLE APPROACH 

Another method of finding the transient response of an RLC circuit is the state 
variable technique.   The later method  (i) can be used to analyze and 
synthesize control systems, (ii) can be applied to time-varying and nonlinear 
systems, (iii) is suitable for digital and computer solution and (iv) can be used 
to develop the general system characteristics. 

A state of a system is a minimal set of variables chosen  such that if their 
values are known at  the time t, and  all inputs are known for times greater 
than t1 , one can calculate the output of the system for times greater than t1 .  
In general, if we designate x  as the state variable, u  as the input, and y  as 
the output of  a system, we can express the input u and output y   as 
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 x t Ax t Bu t( ) ( ) ( )
•

= +      (5.22) 

 y t Cx t Du t( ) ( ) ( )= +     (5.23) 

where 

u t

u t
u t

u tn

( )

( )
( )
.
.
( )

=























1

2

  x t

x t
x t

x tn

( )

( )
( )
.
.
( )

=























1

2

  y t

y t
y t

y tn

( )

( )
( )
.
.
( )

=























1

2

 

 

and A, B, C, and  D are matrices  determined by constants of a system. 

For example, consider a single-input and a single-output system described by 
the differential equation 

d y t
dt

d y t
dt

d y t
dt

dy t
dt

y t u t
4

4

3

3

2

23 4 8 2 6( ) ( ) ( ) ( ) ( ) ( )+ + + + =  

        (5.24)
  

We define the components of the state vector as 

 x t y t1( ) ( )=  

 x t dy t
dt

dx t
dt

x t2
1

1( ) ( ) ( ) ( )= = =
•

 

 x t d y t
dt

dx t
dt

x t3

2

2
2

2( ) ( ) ( ) ( )= = =
•

 

 x t d y t
dt

dx t
dt

x t4

3

3
3

3( ) ( ) ( ) ( )= = =
•
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 x t d y t
dt

dx t
dt

x t5

4

4
4

4( ) ( ) ( ) ( )= = =
•

   (5.25) 

Using Equations (5.24) and (5.25), we get  

 x t u t x t x t x t x t4 4 3 2 16 3 4 8 2( ) ( ) ( ) ( ) ( ) ( )
•

= − − − −  (5.26) 

From the Equations (5.25) and (5.26), we get 

 

x t

x t

x t

x t

x t
x t
x t
x t

u t

1

2

3

4

1

2

3

4

0 1 0 0
0 0 1 0
0 0 0 1
2 8 4 3

0
0
0
6

( )

( )

( )

( )

( )
( )
( )
( )

( )

•

•

•

•


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


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 (5.27) 

or  x t Ax t Bu t( ) ( ) ( )
•

= +     (5.28) 

where 

 x

x t

x t

x t

x t

•

•

•

•

•

=























1

2

3

4

( )

( )

( )

( )

; A =

− − − −



















0 1 0 0
0 0 1 0
0 0 0 1
2 8 4 3

; B =



















0
0
0
6

 (5.29) 

Since 

 y t x t( ) ( )= 1   

we can express the output y t( )  in terms of the state x t( )  and input u t( )  as 

 y t Cx t Du t( ) ( ) ( )= +     (5.30) 

where 
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 [ ]C = 1 0 0 0   and     [ ]D = 0     (5.31) 

 

In RLC circuits, if the voltage across a capacitor and the current flowing in an 
inductor are known at some initial time t,  then the capacitor voltage and 
inductor current will allow the description of system behavior for all 
subsequent times.   This suggests the following guidelines for the selection of 
acceptable state variables for RLC circuits: 

1.   Currents associated with inductors are state variables. 

2. Voltages associated with capacitors are state variables. 

3. Currents or voltages associated with resistors do not specify 
independent state variables. 

4. When closed loops of capacitors or junctions of  inductors exist in a 
circuit, the state variables chosen according to rules 1 and 2 are not 
independent. 

 

Consider the circuit shown in Figure 5.11. 

Vs

R1 R3R2

C1 C2
LV1 V2

I1

y(t)

+
+

+

- -

-

 

Figure 5.11   Circuit for State Analysis 

Using the above guidelines, we select the state variables to be V V1 2, , and i1 .   

Using nodal analysis, we have 
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 C dv t
dt

V V
R

V V
R

s
1

1 1

1

1 2

2

0( ) + − + − =    (5.32) 

 C
dv t

dt
V V

R
i2

2 2 1

2
1 0

( )
+

−
+ =     (5.33) 

Using loop analysis 

 V i R L di t
dt2 1 3
1= + ( )

     (5.34)

   

The output y t( )  is given as  

 y t v t v t( ) ( ) ( )= −1 2      (5.35) 

Simplifying Equations (5.32)  to (5.34), we  get 

 
dv t

dt C R C R
V V

C R
V

C R
s1

1 1 1 2
1

2

1 2 1 1

1 1( ) ( )= − + + +   (5.36)

  

 
dv t

dt
V

C R
V

C R
i
C

2 1

2 2

2

2 2

1

2

( )
= − −     (5.37) 

 
di t

dt
V
L

R
L

i1 2 3
1

( ) = −      (5.38) 

Expressing  the equations in matrix form, we get 

V

V
i

C R C R C R

C R C R C

L
R
L

V
V
i

C R
Vs

1

2

1

1 1 1 2 1 2

2 2 2 2 2

3

1

2

1

1 1

1 1 1
0

1 1 1

0
1

1

0
0

•

•

•



















=

− +

− −

−







































+





















( )

        (5.39) 
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and the output is 

 [ ]y
V
V
i

= −
















1 1 0
1

2

1

     (5.40) 

MATLAB functions for solving ordinary differential equations are ODE 
functions.  These are described in the following section. 

 

5.4.1 MATLAB Ode Functions 

MATLAB has two functions, ode23 and ode45, for computing numerical 
solutions to ordinary differential equations.  The ode23 function integrates a 
system of ordinary differential equations using second- and third-order Runge-
Kutta formulas; the ode45 function uses fourth- and fifth-order Runge-Kutta 
integration equations. 

The general forms of the ode functions are 

 [ t,x ]  =  ode23 (xprime, tstart, tfinal, xo, tol,trace) 

  or 

 [ t,x ]  =  ode45 (xprime, tstart, tfinal, xo, tol, trace) 

where 

xprime    is the name (in quotation marks) of the MATLAB function 
or m-file that contains the differential equations to be integrated. The 

function will compute the state derivative vector x t( )
•

 given the 
current time t, and state vector x t( ) . The function must have 2 input 
arguments, scalar t (time) and column vector x (state) and the 

function returns the output  argument xdot x, ( )
.

, a column vector of 
state derivatives  

   x t dx t
dt

( ) ( )
1

1
•

=  
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 tstart is the starting time for the integration 

 tfinal is the final time for the integration 

 xo is a column vector of initial conditions 

tol is optional. It specifies the desired accuracy of the solution. 

Let us illustrate the use of MATLAB ode functions with the following two 
examples. 

 

Example 5.6 

For Figure 5.2,  VS  = 10V,  R = 10,000 Ω,  C = 10µF.  Find the output voltage 
v t0 ( ) , between the interval  0 to 20 ms, assuming v0 0 0( ) =  and by  (a) 
using a numerical solution to the differential equation; and (b)  analytical 
solution. 

 

Solution 

From Equation (5.3), we have 

 C dv t
dt

v t V
R

o o s( ) ( )+ − = 0  

thus 

 
dv t

dt
V
CR

v t
CR

v to s o( ) ( ) ( )= − = −100 10 0  

From Equation(5.4), the analytical solution is 

 v t e
t

CR
0 10 1( ) = −











−



  

MATLAB Script 
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% Solution for first order differential equation 
% the function diff1(t,y) is created to evaluate 
% the differential equation 
% Its m-file is diff1.m 
% 
% Transient analysis of RC circuit using ode  
% function and analytical solution 
% numerical solution using ode 
 
t0 = 0; 
tf = 20e-3; 
xo = 0;  % initial conditions 
[t, vo] = ode23('diff1',t0,tf,xo); 
 
% the analytical solution given by Equation(5.4) is 
vo_analy = 10*(1-exp(-10*t)); 
 
% plot two solutions 
subplot(121) 
plot(t,vo,'b') 
title('State Variable Approach') 
xlabel('Time, s'),ylabel('Capacitor Voltage, V'),grid 
subplot(122) 
plot(t,vo_analy,'b') 
title('Analytical Approach') 
xlabel('Time, s'),ylabel('Capacitor Voltage, V'),grid 

 
%  
function dy = diff1(t,y) 
dy = 100 - 10*y; 
end 

 
 
Figure 5.12 shows the plot obtained using Equation (5.4) and that obtained 
from  the MATLAB ode23 function.  From  the two plots, we  can see  that the 
two results are identical. 
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 (a)    (b) 

Figure 5.12    Output Voltage v t0 ( )  Obtained from (a) State                  
Variable Approach and (b) Analytical Method 

 

Example 5.7 

For Figure 5.10, if R = 10Ω,  L = 1/32 H,  C = 50µF, use a numerical solution 
of the differential equation to solve v t( ) .  Compare the numerical solution to 
the analytical solution obtained from Example 5.5. 

Solution 

From Example 5.5, vC ( )0  = 20V, iL ( )0 0= ,  and 

 
L

di t
dt

v t

C
dv t

dt
i

v t
R

I

L
C

C
L

C
S

( )
( )

( ) ( )

=

+ + − =0
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Simplifying, we get 

 

di t
dt

v t
L

dv t
dt

I
C

i t
C

v t
RC

L C

C S L C

( ) ( )

( ) ( ) ( )

=

= − −
 

Assuming that 

  
x t i t
x t v t

L

C

1

2

( ) ( )
( ) ( )

=
=  

We get 

 x t
L

x t1 2

1•
=( ) ( )  

 x t
I
C C

x t
RC

x tS
2 1 2

1 1•
= − −( ) ( ) ( )   

We create function m-file containing the above  differential equations. 

MATLAB Script 
 

%  Solution of second-order differential equation 
% The function diff2(x,y) is created to evaluate the diff. equation 
%  the name of the m-file is diff2.m 
%  the function is defined as: 
% 
function xdot = diff2(t,x) 
is = 2; 
c = 50e-6;  L = 1/32;  r = 10; 
k1 = 1/c ;   %  1/C  
k2 =  1/L ;   %  1/L   
k3 = 1/(r*c);   % 1/RC 
 
xdot(1) = k2*x(2); 
xdot(2) = k1*is - k1*x(1) - k3*x(2); 
end 
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To simulate the differential equation defined in diff2 in the interval 0 ≤ t ≤ 30 
ms,  we note that 

 x iL1 0 0 0( ) ( )= =  V 

 x vC2 0 0 20( ) ( )= =  

Using  the MATLAB ode23 function, we get 
 

% solution of second-order differential equation 
% the function diff2(x,y) is created to evaluate 
% the differential equation 
% the name of m-file is diff2.m 
% 
% Transient analysis of RLC circuit using ode function 
% numerical solution 
 
t0 = 0;  
tf = 30e-3; 
x0 = [0 20]; % Initial conditions 
[t,x] = ode23('diff2',t0,tf,x0); 
 
% Second column of matrix x represent capacitor voltage 
subplot(211), plot(t,x(:,2)) 
xlabel('Time, s'), ylabel('Capacitor voltage, V') 
text(0.01, 7, 'State Variable Approach') 
 
% Transient analysis of RLC circuit from Example 5.5 
t2 =0:1e-3:30e-3; 
vt = -6.667*exp(-1600*t2) + 26.667*exp(-400*t2); 
subplot(212), plot(t2,vt) 
xlabel('Time, s'), ylabel('Capacitor voltage, V') 
text(0.01, 4.5, 'Results from Example 5.5') 

The plot is shown in Figure 5.13.  
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Figure 5.13  Capacitor Voltage v t0 ( )  Obtained from Both State 
Variable Approach and  Laplace Transform 

The results from the state variable approach and those obtained from Example 
5.5 are identical. 

 

Example 5.8 

For Figure 5.11,  if v t u tS ( ) ( )= 5  where u t( )  is the unit step function and 
R R R K1 2 3 10= = = Ω ,   C C F1 2 5= = µ ,  and L = 10 H, find and plot 

the voltage v t0 ( )  within the intervals of 0 to 5 s. 

Solution 

Using the element values and Equations (5.36) to (5.38), we have 

 
dv t

dt
v t v t Vs

1
1 240 20 20( ) ( ) ( )= − + +  
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dv t

dt
v t v t i t2

1 2 120 20( ) ( ) ( ) ( )= − −  

 
di t

dt
v t i t1

2 101 1000( ) . ( ) ( )= −  

We create an m-file containing the above differential equations. 
 
MATLAB Script 

 
% 
% solution of a set of first order differential equations 
% the function diff3(t,v) is created to evaluate 
% the differential equation 
% the name of the m-file is diff3.m 
% 
 
function vdot = diff3(t,v) 
 
vdot(1) = -40*v(1) + 20*v(2) + 20*5; 
vdot(2) = 20*v(1) - 20*v(2) - v(3); 
vdot(3) = 0.1*v(2) -1000*v(3); 
end 

To obtain the output voltage in the interval of  0 ≤ t  ≤  5 s,  we note that the 
output voltage 

  v t v t v t0 1 2( ) ( ) ( )= −   

Note that at t < 0, the step signal is zero so 

  v v i0 2 10 0 0 0( ) ( ) ( )= = =    

Using ode45 we get 

 
% solution of a set of first-order differential equations 
% the function diff3(t,v) is created to evaluate 
% the differential equation 
% the name of the m-file is diff3.m 
% 
% Transient analysis of RLC circuit using state 
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% variable approach 
 
t0 = 0; 
tf = 2; 
x0 = [0 0 0]; % initial conditions 
 
[t,x] = ode23('diff3', t0, tf, x0); 
 
tt = length(t); 
 
for i = 1:tt 
   vo(i) = x(i,1) - x(i,2); 
end 
 
plot(t, vo) 
title('Transient analysis of RLC') 
xlabel('Time, s'), ylabel('Output voltage') 

The plot of the output voltage is shown in Figure 5.14. 

 

Figure 5.14  Output Voltage  10 V

10,000 Ohms

L
R

V
LPL  
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EXERCISES  
 

5.1   If the switch is opened at t = 0,  find v t0 ( ) .  Plot v t0 ( )  between the   
time interval  0 ≤ t  ≤ 5 s. 

30V

20 kilohms 10 kilohms

1  microfarads40 kilohms

t = 0

Vo(t)

 

 Figure P5.1  Figure for Exercise 5.1 
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5.2        The switch is close at t = 0; find i t( )  between the intervals 0 to 10 
  ms.  The resistance values are in ohms. 
 

9V
8 8

16

4 H

t = 0

i(t)

 

 Figure P5.2  Figure for Exercise 5.2 
 
5.3 For the series RLC circuit, the switch is closed at t = 0.  The initial  

energy in the storage elements is zero.  Use MATLAB to find  v t0 ( ) . 

 

10 Ohms 1.25 H

0.25 microfarads8 V Vo(t)

t = 0

 

 Figure P5.3  Circuit for Exercise 5.3 

5.4 Use MATLAB to solve the following differential equation 

 
d y t

dt
d y t

dt
dy t

dt
y t

3

3

2

27 14 12 10( ) ( ) ( ) ( )+ + + =  
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with initial conditions 

  y( )0 1= , 
dy

dt
( )0 2= ,  

d y
dt

2

2
0 5( ) =  

 Plot  y(t) within the intervals of 0 and 10 s. 
 
5.5   For Figure P5.5, if  V u tS = 5 ( ),  determine the voltages V1(t), V2(t),   

V3(t) and V4(t) between the intervals of 0 to 20 s.  Assume that the initial 
voltage across each capacitor is zero. 

 

VS

1 kilohms

1pF

 V1 1 kilohms1 kilohms1 kilohms

4pF3pF2pF

 V4 V3 V2

 

 Figure P5.5   RC Network 

 

5.6 For the differential equation 

 
d y t

dt
dy t

dt
y t t t

2

2 5 6 3 7
( ) ( )

( ) sin( ) cos( )+ + = +  

with initial conditions   y( )0 4=    and   
dy

dt
( )0 1= −  

(a)  Determine  y t( )  using Laplace transforms. 

(b)  Use MATLAB to determine y t( ) . 

 (c)   Sketch y t( )  obtained in parts (a) and (b). 

 (d)   Compare the results obtained in part c. 
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CHAPTER SIX 
    

AC ANALYSIS AND NETWORK FUNCTIONS 
 
 
 
This chapter discusses sinusoidal steady state power calculations.  Numerical 
integration is used to obtain the rms value, average power and quadrature 
power.  Three-phase circuits are analyzed by converting the circuits into the 
frequency domain and by using the Kirchoff voltage and current laws. The un-
known voltages and currents are solved using  matrix techniques. 
 
Given a network function or transfer function, MATLAB has functions that can 
be used  to (i) obtain the poles and zeros, (ii)  perform partial fraction expan-
sion,  and (iii) evaluate the transfer function at specific frequencies.   Further-
more, the frequency response of networks can be obtained using a MATLAB 
function.   These features of MATLAB are  applied in this chapter. 
 
 

6.1 STEADY STATE AC POWER 
 
Figure 6.1 shows an impedance with voltage across it given by v t( )  and cur-
rent through it  i t( ) . 

 

v(t)

i(t)

Z

 
 
+ 
Figure 6.1  One-Port Network with Impedance Z 

 
 
The instantaneous power p t( )  is 
 
 p t v t i t( ) ( ) ( )=      (6.1) 
 
If   v t( )  and i t( ) are periodic with  period  T ,   the rms or effective values of 
the voltage  and current are 
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 V
T

v t dtrms

T

= ∫
1 2

0

( )      (6.2) 

 
 

 I
T

i t dtrms

T

= ∫
1 2

0

( )      (6.3) 

where 
 
 Vrms   is the rms value of v t( )  
 
 I rms   is the rms value of i t( )  
 
The average power dissipated by the one-port network is 
 

 P
T

v t i t dt
T

= ∫
1

0

( ) ( )      (6.4) 

 
The power factor, pf ,   is given as 
 

 pf P
V Irms rms

=       (6.5) 

For the special case, where both the current i t( )  and voltage v t( )  are both 
sinusoidal, that is, 
 
 v t V wtm V( ) cos( )= +θ     (6.6) 
 
and  
 
 i t I wtm I( ) cos( )= +θ      (6.7) 
  
the rms value of the voltage v t( )  is  
 

 V V
rms

m=
2

      (6.8) 

 
and that of the current is 
 

 

© 1999 CRC Press LLC 

 

© 1999 CRC Press LLC 



 I I
rms

m=
2

      (6.9) 

 
The average power  P  is 
 
 P V Irms rms V I= −cos( )θ θ     (6.10) 
   
The power factor, pf ,  is 
 
 pf V I= −cos( )θ θ      (6.11) 
 
The reactive power Q  is 
 
 Q V Irms rms V I= −sin( )θ θ     (6.12) 
 
and the complex power, S ,  is 
 
 S P jQ= +       (6.13) 
 

 [ ]S V I jrms rms V I V I= − + −cos( ) sin( )θ θ θ θ   (6.14) 
 
Equations (6.2) to (6.4) involve the use of integration in the determination of 
the rms value and the average power.  MATLAB has two functions, quad and 
quad8, for performing numerical function integration. 
 
 
 
6.1.1 MATLAB Functions quad and quad8 
 
The quad function uses an  adaptive, recursive Simpson’s rule.  The quad8 
function uses an adaptive, recursive Newton Cutes 8 panel rule.  The quad8 
function is better than the quad at handling functions with “soft” singularities 

such as xdx∫ .  Suppose we want to find q given as 

 

 q funct x dx
a

b

= ∫ ( )  

 
The general forms of quad and quad8 functions that can be used to find q are 
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 quad funct a b tol trace(' ' , , , , )  
 
 quad funct a b tol trace8(' ' , , , , )  
 
where 
 funct    is a MATLAB function name (in quotes) that returns a  

vector of values of f x( ) for a  given  vector of input values 
x . 
 

 a is the lower limit of integration. 
 
 b is the upper limit of integration. 
 
 tol is the tolerance limit set for stopping  the iteration of the  

numerical integration.  The iteration continues until the rela-
tive error is less than tol.  The default value is 1.0e-3. 

 
 trace  allows  the plot of a graph showing the process of the  

numerical integration.  If the trace is nonzero, a graph is 
plotted.  The default value is zero. 

 
Example 6.1 shows the use of the quad function to perform alternating current 
power calculations. 
 
 
Example  6.1 
  
For Figure 6.1, if v t t( ) cos( )= +10 120 300π  and   

i t t( ) cos( )= +6 120 600π .  Determine the average power, rms value of 
v t( )  and the power factor using  (a) analytical solution and  (b) numerical so-
lution. 
 
 
Solution 
 
MATLAB Script 
 

diary  ex6_1.dat 
% This program computes the average power, rms value and 
% power factor using quad function. The analytical and  
% numerical results are compared. 
% numerical calculations 
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T = 2*pi/(120*pi); % period of the sin wave 
a = 0; % lower limit of integration 
b = T; % upper limit of integration 
x = 0:0.02:1; 
t = x.*b; 
v_int = quad('voltage1', a, b); 
v_rms = sqrt(v_int/b);  % rms of voltage 
i_int = quad('current1',a,b); 
i_rms = sqrt(i_int/b);  % rms of current 
 
p_int = quad('inst_pr', a, b); 
p_ave = p_int/b;    % average power 
pf = p_ave/(i_rms*v_rms); % power factor 
% 
% analytical solution 
% 
p_ave_an = (60/2)*cos(30*pi/180);  % average power 
v_rms_an = 10.0/sqrt(2); 
pf_an = cos(30*pi/180); 
 
% results are printed 
fprintf('Average power, analytical %f \n Average power, numerical: 
%f \n', p_ave_an,p_ave) 
fprintf('rms voltage, analytical: %f \n rms voltage, numerical: %f \n', 
v_rms_an, v_rms) 
fprintf('power factor, analytical: %f \n power factor, numerical: %f \n', 
pf_an, pf) 
diary 

 
 
The following functions are used in the above m-file: 
 

function vsq = voltage1(t) 
% voltage1  This function is used to 
%           define the voltage function 
vsq = (10*cos(120*pi*t + 60*pi/180)).^2; 
end 

 
function isq = current1(t) 
% current1  This function is to define the current 
% 
isq = (6*cos(120*pi*t + 30.0*pi/180)).^2; 
end 
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function pt = inst_pr(t) 
% inst_pr   This function is used to define 
%           instantaneous power obtained by multiplying 
%           sinusoidal voltage and current 
it = 6*cos(120*pi*t + 30.0*pi/180); 
vt = 10*cos(120*pi*t + 60*pi/180); 
pt = it.*vt; 
end 

 
 
 
The results obtained are 

 
Average power, analytical 25.980762  
Average power, numerical: 25.980762  
rms voltage, analytical: 7.071068  
rms voltage, numerical: 7.071076  
power factor, analytical: 0.866025  
power factor, numerical: 0.866023  

 
From the results, it can be seen that the two techniques give almost the same 
answers. 
 
 
 
6.2 SINGLE- AND THREE-PHASE AC CIRCUITS 
 
Voltages and currents of a network can be obtained in the time domain.  This 
normally involves solving differential equations.  By transforming the differen-
tial equations into algebraic equations using phasors  or complex frequency 
representation, the analysis can be simplified.   For a voltage given by 
 
 v t V e wtm

t( ) cos( )= +σ θ  
 

 [ ]v t V e wtm
t( ) Re cos( )= +σ θ     (6.15) 

 
the phasor is 
 
 V V e Vm

j
m= = ∠θ θ      (6.16) 

 
and the complex frequency  s  is 
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 s jw= +σ       (6.17)
  
When the voltage  is purely sinusoidal, that is 
 
 v t V wtm2 2 2( ) cos( )= +θ     (6.18) 
 
then the phasor 
 
 V V e Vm

j
m2 2 2 2

2= = ∠θ θ     (6.19) 
    
and complex frequency is purely imaginary, that is, 
 
 s jw=        (6.20) 
 
To analyze  circuits with sinusoidal excitations,  we convert the circuits  into 
the s-domain with s jw= .  Network analysis laws, theorems, and rules are 
used to solve for unknown currents and voltages in the frequency domain.  The 
solution is then converted into the time domain using inverse phasor transfor-
mation.  For example, Figure 6.2 shows an RLC circuit in both the time and 
frequency domains. 
 

V3(t)Vs(t) = 8 cos (10t + 15o) V

R1
L1 L2

R2

C1

R3

  
    (a) 
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V3Vs = 8  15o

R1 j10 L1
j10 L2

R2 R3

V1

V2

1/(j10C1)

 
    (b) 
 
 Figure 6.2   RLC Circuit with Sinusoidal Excitation (a) Time  
   Domain  (b) Frequency Domain Equivalent 
 
 
If the values of  R R R L L1 2 3 1 2, , , ,  and C1  are known, the voltage V3  can 
be obtained using circuit analysis tools.  Suppose V3  is 
 
 V Vm3 3 3= ∠ θ ,   
 
then the time domain voltage V3 (t) is 
 
 v t V wtm3 3 3( ) cos( )= +θ   
 
The following two examples illustrate the use of MATLAB for solving one-
phase circuits. 
 
 
 
Example 6.2 
 
In Figure 6.2, if R1   = 20 Ω, R2   = 100Ω , R3  = 50 Ω , and L1  = 4 H, L2  = 
8 H and C1  = 250µF, find v t3 ( )  when w = 10 rad/s. 
 
 
Solution 
 
Using nodal analysis, we obtain the following equations. 
 
At node 1, 
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V V

R
V V
j L

V V

j C

s1

1

1 2

1

1 3

1
10 1

10
0− + − + − =

( )
   (6.21) 

 
At node 2, 
 

 
V V
j L

V
R

V V
j L

2 1

1

2

2

2 3

210 10
0

−
+ +

−
=     (6.22) 

 
At node 3, 
  

 
V
R

V V
j L

V V

j C

3

3

3 2

2

3 1

1
10 1

10
0+ − + − =

( )
   (6.23) 

 
Substituting the element values in the above three equations and simplifying, 
we get the matrix equation 
  

0 05 0 0225 0 025 0 0025
0 025 0 01 0 0375 0 0125
0 0025 0 0125 0 02 0 01

0 4 15
0
0

1

2

3

0. . . .
. . . .
. . . .

.− −
−

− −

































=
∠















j j j
j j j
j j j

V
V
V

 

 
The above matrix can be written as  
 
 [ ][ ] [ ]Y V I= .  
  
We can compute the vector [v] using the MATLAB command 
 
 ( )V inv Y I= *  
  
where  

( )inv Y  is the inverse of the matrix [ ]Y . 
 
 
A MATLAB program for solving V3  is as follows: 
 
MATLAB Script 

 
diary ex6_2.dat 
% This program computes the nodal voltage v3 of circuit Figure 6.2 
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% Y is the admittance matrix; % I is the current matrix  
% V is the voltage vector 
 
Y = [0.05-0.0225*j   0.025*j        -0.0025*j; 
     0.025*j         0.01-0.0375*j   0.0125*j; 
    -0.0025*j        0.0125*j        0.02-0.01*j]; 
 
c1 = 0.4*exp(pi*15*j/180); 
I = [c1 
     0 
     0];  % current vector entered as column vector 
 
V = inv(Y)*I;  % solve for nodal voltages 
v3_abs = abs(V(3));  
v3_ang = angle(V(3))*180/pi; 
 
fprintf('voltage V3, magnitude: %f \n voltage V3, angle in degree: 
%f', v3_abs, v3_ang) 
diary 

 
 
The following results are obtained: 
 

voltage V3, magnitude: 1.850409  
voltage V3, angle in degree: -72.453299 

 
From the MATLAB results, the time domain voltage v t3 ( )  is 
   
  v t t3

0185 10 72 45( ) . cos( . )= −  V  
 
 
 
Example 6.3 
 
For the circuit shown in Figure 6.3, find the current  i t1 ( )  and the voltage 
v tC ( ) . 

 

© 1999 CRC Press LLC 

 

© 1999 CRC Press LLC 



i(t)

5 cos (103t) V

4 Ohms 400  microfarads 8mH 10 Ohms

5 mH

6 Ohms

100  microfaradsVc(t)

2 cos (103 t + 75o) V

 
 Figure 6.3 Circuit with Two Sources 
 
 
Solution 
 
Figure 6.3 is transformed into the frequency domain. The resulting circuit is 
shown in Figure 6.4.  The impedances are in ohms. 
 

I1

5   0o V

4 -j2.5 j8 10

j5

6

-j10Vc

2   75o V

I2

 
Figure 6.4 Frequency Domain Equivalent of  Figure 6.3 

 
 
Using loop analysis, we have 
 
 − ∠ + − + + − − =5 0 4 2 5 6 5 10 00

1 1 2( . ) ( )( )j I j j I I  (6.24) 
 
 ( ) ( )( )10 8 2 75 6 5 10 02

0
2 1+ + ∠ + + − − =j I j j I I  (6.25)

  
Simplifying, we have 
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 ( . ) ( )10 7 5 6 5 5 01 2

0− − − = ∠j I j I  
   
 − − + + = − ∠( ) ( )6 5 16 3 2 751 2

0j I j I  
 
In matrix form, we obtain 
 

 
10 7 5 6 5

6 5 16 3
5 0
2 75

1

2

0

0

− − +
− + +


















 =

∠
− ∠











j j
j j

I
I

.
 

 
The above matrix equation can be rewritten as   
 

[ ][ ] [ ]Z I V= .   
 
We obtain the current vector  [ ]I  using the MATLAB command 
 
 ( )I inv Z V= *  
 
where  ( )inv Z  is the inverse of the matrix [ ]Z . 
 
 
The voltage VC  can be obtained as 
 
 V j I IC = − −( )( )10 1 2       
 
A  MATLAB program for determining I1  and Va  is as follows: 
 
MATLAB Script 
 

diary ex6_3.dat 
% This programs calculates the phasor current I1 and 
% phasor voltage Va. 
% Z is impedance matrix 
% V is voltage vector 
% I is current vector 
 
Z = [10-7.5*j   -6+5*j; 
     -6+5*j   16+3*j]; 
 
b = -2*exp(j*pi*75/180); 
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V = [5  
        b];  % voltage vector in column form 
 
I = inv(Z)*V; % solve for loop currents 
i1 = I(1); 
i2 = I(2); 
 
Vc = -10*j*(i1 - i2); 
i1_abs = abs(I(1));   
i1_ang = angle(I(1))*180/pi; 
Vc_abs = abs(Vc); 
Vc_ang = angle(Vc)*180/pi; 
 
%results are printed 
fprintf('phasor current i1, magnitude: %f \n phasor current i1, angle in 
degree: %f \n', i1_abs,i1_ang) 
fprintf('phasor voltage Vc, magnitude: %f \n phasor voltage Vc, angle 
in degree: %f \n',Vc_abs,Vc_ang) 
diary 
 

The following results were obtained: 
 
phasor current i1, magnitude: 0.387710  
phasor current i1, angle in degree: 15.019255  
phasor voltage Vc, magnitude: 4.218263  
phasor voltage Vc, angle in degree: -40.861691 

 
The current  i t1 ( )  is 
 
 i t t1

3 00 388 10 1502( ) . cos( . )= +   A 
 
and the voltage v tC ( )  is 
 
 v t tC ( ) . cos( . )= −4 21 10 40 863 0  V 
 
Power utility companies use three-phase circuits for the generation, transmis-
sion and distribution of large blocks of electrical power. The basic structure of 
a three-phase system consists of  a three-phase voltage source connected  to a 
three-phase load through transformers and transmission lines.  The three-phase 
voltage source can be wye- or delta-connected.  Also the three-phase load can 
be delta- or wye-connected. Figure 6.5 shows a 3-phase system with wye-
connected source and wye-connected load.  
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Z T1

Z T2

Z T3

Z t4 Z Y2Z Y3

Z Y1

Van

Vbn

Vcn

 
 
 Figure 6.5  3-phase System, Wye-connected Source and Wye- 
   connected Load 
 

Z t1

Z t2

Z t3
Z    2

Van

Vbn

Vcn

Z    3

Z    1

 
 
 
 Figure 6.6  3-phase System, Wye-connected Source and Delta- 
   connected Load 
 
For a balanced abc system, the voltages V V Van bn cn, ,  have the same magni-
tude and they are out of phase by 1200.  Specifically, for a balanced abc sys-
tem, we have 
 
 V Van P= ∠ 00  

 V Vbn P= ∠ − 1200      (6.26) 

 V Vcn P= ∠ 1200
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For cba system 
 
 V Van P= ∠ 00  

 V Vbn P= ∠ 1200      (6.27) 

 V Vcn P= ∠ − 1200  
    
The wye-connected load is balanced if 
 
 Z Z ZY Y Y1 2 3= =      (6.28) 
 
Similarly, the delta-connected load is balanced if 
 
 Z Z Z∆ ∆ ∆1 2 3= =      (6.29) 
 
We have a balanced three-phase system of Equations (6.26) to (6.29)  that are 
satisfied with the additional condition 
 
 Z Z ZT T T1 2 3= =      (6.30) 
 
Analysis of balanced three-phase systems can easily be done by converting the 
three-phase system into an equivalent one-phase system and performing simple 
hand calculations.  The method of symmetrical components can be used to ana-
lyze unbalanced three-phase systems.  Another method that can be used to ana-
lyze three-phase systems  is to use KVL and KCL.  The unknown voltage or 
currents are solved using MATLAB.  This is illustrated by the following ex-
ample. 
 
 
 
Example 6.4 
 
In Figure 6.7, showing an unbalanced wye-wye  system, find the phase volt-
ages V VAN BN,  and VCN . 
 
 
Solution 
 
Using  KVL, we can solve for I I I1 2 3, , . From the figure,  we have 
 
 110 0 1 1 5 120

1 1∠ = + + +( ) ( )j I j I    (6.31) 
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 110 120 1 2 3 40
2 2∠ − = − + +( ) ( )j I j I   (6.32) 

  
 110 120 1 0 5 5 120

3 3∠ = − + −( . ) ( )j I j I   (6.33) 
 
 

      +-

      +-

-       +

110   0o V

110  -120o V

110  120o V

1 + j1 Ohms

1 - j2 Ohms

1 - j0.5 Ohms

5 + j12 Ohms

3 + j4 Ohms

5 - j12 Ohms

NA

B

C

I1

I2

I3  
 
  Figure 6.7   Unbalanced Three-phase System 
 
 
Simplifying Equations (6.31), (6.32) and (6.33), we have 
 
 110 0 6 130

1∠ = +( )j I      (6.34) 
 
 110 120 4 20

2∠ − = +( )j I     (6.35) 
  
 110 120 6 12 50

3∠ = −( . )j I     (6.36) 
 
and expressing the above three equations in matrix form, we have 
 

 

6 13 0 0
0 4 2 0
0 0 6 12 5

110 0
110 120
110 120

1

2

3

0

0

0

+
+

−

































=
∠

∠ −
∠

















j
j

j

I
I
I.

 

 
The above matrix can be written as 
 
 [ ][ ] [ ]Z I V=  
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We obtain the vector [ ]I  using the MATLAB command 
 
 I inv Z V= ( ) *  
The phase voltages can be obtained as 
 
 V j IAN = +( )5 12 1  
 
 V j IBN = +( )3 4 2  
 
 V j ICN = −(5 )( )12 3  
 
The MATLAB program for obtaining the phase voltages is 
 
MATLAB Script 
 

diary ex6_4.dat 
% This program calculates the phasor voltage of an 
% unbalanced three-phase system 
% Z is impedance matrix 
% V is voltage vector and 
% I is current vector 
Z = [6-13*j   0       0; 
     0        4+2*j   0; 
     0        0       6-12.5*j]; 
c2 = 110*exp(j*pi*(-120/180)); 
c3 = 110*exp(j*pi*(120/180)); 
 
V = [110; c2; c3]; % column voltage vector 
I = inv(Z)*V;  % solve for loop currents 
% calculate the phase voltages 
% 
Van = (5+12*j)*I(1); 
Vbn = (3+4*j)*I(2); 
Vcn = (5-12*j)*I(3); 
Van_abs = abs(Van); 
Van_ang = angle(Van)*180/pi; 
Vbn_abs = abs(Vbn); 
Vbn_ang = angle(Vbn)*180/pi; 
Vcn_abs = abs(Vcn); 
Vcn_ang = angle(Vcn)*180/pi; 
 
% print out results 
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fprintf('phasor voltage Van,magnitude: %f \n phasor voltage Van, an-
gle in degree: %f \n', Van_abs, Van_ang) 
fprintf('phasor voltage Vbn,magnitude: %f \n phasor voltage Vbn, an-
gle in degree: %f \n', Vbn_abs, Vbn_ang) 
fprintf('phasor voltage Vcn,magnitude: %f \n phasor voltage Vcn, an-
gle in degree: %f \n', Vcn_abs, Vcn_ang) 
diary 

 
The following results were obtained: 
 

phasor voltage Van,magnitude: 99.875532  
phasor voltage Van, angle in degree: 132.604994  
phasor voltage Vbn,magnitude: 122.983739  
phasor voltage Vbn, angle in degree: -93.434949  
phasor voltage Vcn,magnitude: 103.134238  
phasor voltage Vcn, angle in degree: 116.978859 

 
 
 

6.3 NETWORK CHARACTERISTICS 
 
 
Figure 6.8 shows a linear network with input x t( )   and output  y t( ) .   Its 
complex frequency representation is also shown. 
 

     linear
     networkx(t) y(t)

 
           

  (a) 
 

     linear
     networkX(s)est Y(s)est

 
            

 (b) 
 
 Figure 6.8  Linear Network Representation  (a) Time Domain  

         (b) s- domain 
 

In general, the input x t( )   and output  y t( )  are related by the differential 
equation 
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a d y t
dt

a d y t
dt

a dy t
dt

a y t

b d x t
dt

b d x t
dt

b dx t
dt

b x t

n

n

n n

n

n

m

m

m m

m

m

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

+ + + + =

+ + +

−

−

−

−

−

−

1

1

1 1 0

1

1

1 1 0

!

"

 

        (6.37) 
 
where a a a b b bn n m m, , ..., , , , ...− −1 0 1 0  are real constants. 
 
 
If  x t X s est( ) ( )= , then the output must have the form y t Y s est( ) ( )= , 
where X s( ) and Y s( )  are phasor representations of x t( )  and y t( ) .  From 
equation (6.37), we have 
 

( ) ( )
( ) ( )

a s a s a s a Y s e
b s b s b s b X s e

n
n

n
n st

m
m

m
m st

+ + + + =

+ + + +
−

−

−
−

1
1

1 0

1
1

1 0

"
"

 

        
        (6.38) 
 
and the network function 
 

 H s Y s
X s

b s b s b s b
a s a s a s a

m
m

m
m

n
n

n
n( ) ( )

( )
= = + + +

+ + +
−

−

−
−

1
1

1 0

1
1

1 0

"
"

  (6.39) 

 
The network function can be rewritten in factored form 
 

 H s k s z s z s z
s p s p s p

m

n

( ) ( )( ) ( )
( )( ) ( )

= − − −
− − −

1 2

1 2

"
"

   (6.40) 

  
where 
 k  is a constant 
 z z zm1 2, , ...,  are zeros of the network function. 
 p p pn1 2, , ...,  are poles of the network function. 
 
The network function can also be expanded using partial fractions as 
 

 H s
r

s p
r

s p
r

s p
k sn

n
( ) .... ( )=

−
+

−
+ +

−
+1

1

2

2
 (6.41) 
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6.3.1 MATLAB functions roots, residue and polyval 
 
MATLAB has the function roots that can be used to obtain the poles and zeros 
of a network function. The MATLAB function residue can be used for partial 
fraction expansion.   Furthermore, the MATLAB function polyval can be used 
to evaluate the network function. 
 
The MATLAB function roots determines the roots of a polynomial.  The gen-
eral form of the roots function is 
 
 r roots p= ( )       (6.42) 
 
where   

p is a vector containing the coefficients of the polynomial in  
  descending order   

r is a column vector containing the roots of the polynomials 
 
 
For example, given the polynomial 
 
 f x x x x( ) = + + +3 29 23 15 
 
the commands to compute and print out the roots of  f x( )  are 
 

p  = [1  9  23  15] 
r  = roots (p) 

 
and the values printed are 
 
 r  =  
        -1.0000 
        -3.0000 
        -5.0000 
 
Given the roots of a polynomial, we can obtain the coefficients of the polyno-
mial by using the MATLAB function poly 
 
Thus 
 
 S  = poly ( [ -1    -3    -5  ]1 )    (6.43) 
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will give a row vector s given as 
 
 S = 
                   1.0000               9.0000            23.0000             15.0000 
 
 
The coefficients of  S are the same as those of  p. 
 
 
The MATLAB function polyval is used for polynomial evaluation.  The gen-
eral form of polyval is 
 
 polyval p x( , )       (6.44) 
 
where 

  
p  is a vector whose elements are the coefficients of a polynomial in  

  descending powers 
 polyval p x( , )   is the value of the polynomial evaluated at x  
 
For example, to evaluate the polynomial 
 
 f x x x x( ) = − − +3 23 4 15  
 
at x  = 2 , we use the command 
 
 p  = [1  -3    -4    15]; 
 polyval(p, 2) 
 
Then we get 
 

ans = 
          3 

 
 
The MATLAB function residue can be used to perform partial fraction expan-
sion.  Assuming  H s( )  is the network function,  since H s( )  may represent 
an improper fraction, we may express  H s( )  as a mixed fraction  

 H s
B s
A s

( )
( )
( )

=       (6.45)

  

 

© 1999 CRC Press LLC 

 

© 1999 CRC Press LLC 



 H s k s
N s
D sn

n

N
n( )

( )
( )

= +
=
∑

0
    (6.46) 

   
where  

N s
D s

( )
( )

 is a proper fraction 

  
From equations (6.41) and ( 6.46), we get 
 

 H s
r

s p
r

s p
r

s p
k sn

n
n

n

N
n( ) ....=

−
+

−
+ +

−
+

=
∑1

1

2

2 0
 (6.47) 

   
Given the coefficients of the numerator and denominator polynomials, the 
MATLAB residue function provides the values of r1, r2, ...... rn , p1, p2, .....pn, 
an d  k1, k2 , .....kn .  The general form of the residue function is 
 
 [ , , ] ( , )r p k residue num den=     (6.48) 
 
where 
 
 num is a row vector whose entries are the coefficients of the  
  numerator polynomial in descending order 
 
 den is a row vector whose entries are the coefficient of the 
 denominator polynomial in descending order  
 
 r is returned as a column vector  
 
 p (pole locations)  is returned as  a column vector 
 
 k (direct term)  is returned  as a row vector 
 
The command 
 
 [ , ] ( , , )num den residue r p k=     (6.49) 
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Converts the partial fraction expansion back to the polynomial ratio   
 

H s
B s
A s

( )
( )
( )

=   

 
For example, given 
 

 H s
s s s s
s s s s

( ) =
+ + + +
+ + + +

4 3 6 10 20
2 5 2 8

4 3 2

4 3 2    (6.50) 

 
for the above network function, the following commands will perform partial 
fraction expansion 
 

 num = [4 3 6 10 20]; 
 den = [1 2 5 2 8]; 
 [r, p, k] = residue(num, den)    (6.51) 

 
and we shall get the following results 

 
r = 
     -1.6970 + 3.0171i 
     -1.6970 - 3.0171i 
     -0.8030 - 0.9906i 
     -0.8030 + 0.9906i 
 
p = 
     -1.2629 + 1.7284i 
     -1.2629 - 1.7284i 
      0.2629 + 1.2949i 
      0.2629 - 1.2949i 

 
k = 
      4 

 
The following two examples show how to use  MATLAB function roots to 
find  poles and zeros of circuits. 
 
 
 
Example 6.5 

For the circuit shown below, (a) Find the network function H s
V s
V s

o

S
( )

( )
( )

=  
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(b) Find the poles and zeros of  H s( ) , and 

 (c) if  v t e tS
t( ) cos( )= +−10 2 403 0 , find v t0 ( ) . 

 

Vo(t)Vs(t)

3 H

4 H

6 Ohms

2 Ohms

 
 
 Figure 6.9   Circuit for Example 6.5 
 
 
Solution 
 
In the s-domain,  the above figure becomes 

Vo(s)Vs

3s

4s

6

2

  
Figure 6.10  S-domain Equivalent Circuit of Figure 6.9 

 
 

 [ ]
V s
V s

V s
V s

V s
V s

s
s

s
s sS X

X

S

0 0 4
6 4

2 6 4
2 6 4 3

( )
( )

( )
( )

( )
( ) ( )

[ ( )]
( ( ))

= =
+

+
+ +

 

 
Simplifying, we get 
 

 
V s
V s

s s
s s sS

0
2

3 2

4 6
6 25 30 9

( )
( )

=
+

+ + +
    (6.52) 
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The phasor voltage VS
o= ∠10 40  ;   s j= − +3 2  

 

 V s H so
s j0 3 210 40( ) ( ) ( )= ∠ =− +  

 
(b, c) MATLAB  is used to find the poles, zeros and  v t0 ( ) . 
 
MATLAB Script 
 

diary ex6_5.dat 
% Program for poles and zeros 
num = [4  6  0]; 
den = [6  25  30  9]; 
disp('the zeros are') 
z = roots(num) 
disp('the poles are') 
p = roots(den) 
% program to evaluate transfer function and 
% find the output voltage 
s1 = -3+2*j; 
n1 = polyval(num,s1); 
d1 = polyval(den,s1); 
vo = 10.0*exp(j*pi*(40/180))*n1/d1; 
vo_abs = abs(vo); 
vo_ang = angle(vo)*180/pi; 
% print magnitude and phase of output voltage 
fprintf('phasor voltage vo, magnitude: %f \n phasor voltage vo, angle 
in degrees: %f', vo_abs, vo_ang) 
diary 

 
MATLAB results are 
 
Zeros 

z = 
      0 
     -1.5000 

 
Poles  

p = 
      -2.2153 
      -1.5000 
      -0.4514 

 
phasor voltage vo, magnitude: 3.453492  
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phasor voltage vo, angle in degrees: -66.990823 
 
From the results, the output voltage is given as 
 
  v t e tt( ) . cos( . )= −−3 45 2 66 993 0  
 
 
 
Example 6.6 
 
Find the inverse Laplace transform of  
 

 G s
s s

s s s
( ) =

+ +
+ + +
10 20 40

12 47 60

2

3 2   

 
Solution 
 
MATLAB Script 
 

diary ex6_6.dat 
% MATLAB is used to do the partial fraction expansion 
% 
num = [10 20 40]; 
den = [1 12 47 60]; 
 
% we get the following results 
[r, p, k] = residue(num,den) 
diary 

 
 
MATLAB results are 

 
r = 
       95.0000 
    -120.0000 
       35.0000 
 
p = 
       -5.0000 
       -4.0000 
       -3.0000 
 
k = 

 

© 1999 CRC Press LLC 

 

© 1999 CRC Press LLC 



       [] 
 
From the results, we get 
 

 G s
s s s

( ) =
+

−
+

+
+

95
5

120
4

35
3

  

 
and the inverse Laplace transform is 
 
 g t e e et t t( ) = − +− − −35 120 953 4 5    (6.53) 
 
 
 

6.4 FREQUENCY RESPONSE 
 
The general form of  a  transfer  function of an analog circuit is given in Equa-
tion (6.39).  It is repeated here. 
 

 H s Y s
X s

b s b s b s b
a s a s a s a

m
m

m
m

n
n

n
n( ) ( )

( )
= = + + +

+ + +
−

−

−
−

1
1

1 0

1
1

1 0

"
"

   

 
More specifically, for a second-order analog filter, the following transfer func-
tions can be obtained: 
 
(i) Lowpass 
 

 H s
k

s Bs wLP ( ) =
+ +

1
2

0
2     (6.54) 

 
(ii) Highpass 

 

 H s
k s

s Bs wHP ( ) =
+ +

2
2

2
0
2     (6.55) 

 
(iii) Bandpass 
 

 H s
k s

s Bs wBP ( ) =
+ +

3
2

0
2     (6.56) 

(iv)  Bandreject 
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 H s
k s k

s Bs wBR ( ) =
+

+ +
4

2
5

2
0
2     (6.57) 

where 
 
 k k k k B1 2 3 4, , , ,  and w0  are constants  
  
 
Figure 6.11 shows the circuit diagram of some filter sections. 
 

Vo

R R

Rf

(K - 1)RfC

C

Vs

 
 
    (a) 

Vo

R

R

Rf

(K - 1)Rf

CC

Vs

 
   
               (b) 
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R2

R1 C

C

Vs

R3

V0

 
    (c ) 
 
 
 Figure 6.11  Active Filters (a) Lowpass, (b) Highpass and  
    (c ) Bandpass 
 
 
Frequency response is the response of a network to sinusoidal input signal.  If 
we substitute   s jw=  in the general network function, H s( ),  we get 
 

 H s M w ws jw( ) ( ) ( )= = ∠ θ     (6.58) 

 
where 

 M w H jw( ) ( )=      (6.59) 
 
and 
 
 θ( ) ( )w H jw= ∠      (6.60) 
 
 
The plot of M (ω) versus ω  is the magnitude characteristics or response.  Also, 
the plot of  θ( )w  versus  ω  is the phase response.   The magnitude and phase 
characteristics can be obtained using MATLAB function freqs. 
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6.4.1 MATLAB function freqs 
 
MATLAB function freqs is used to obtain the frequency response of  transfer 
function  H s( ) .   The general form of the frequency function is 
 
 
 hs freqs num den range= ( , , )     (6.61) 
 
where 

 H s Y s
X s

b s b s b s b
a s a s a s a

m
m

m
m

n
n

n
n( ) ( )

( )
= = + + +

+ + +
−

−

−
−

1
1

1 0

1
1

1 0

"
"

  (6.62) 

 
 

 [ ]num b b b bm m= −. ...1 1 0     (6.63) 
 

 [ ]den a a a an n= −1 1 0...     (6.64) 
 
   

range    is  range of frequencies for case 
 
 hs      is the frequency response (in complex number form) 
 
 
Suppose we want to graph the frequency response of the transfer function 
given as 

 H s
s

s s
( ) =

+
+ +
2 4

4 16

2

2      (6.65) 

 
We can use the following commands to find the magnitude characteristics 

 
 num = [2 0 4]; 
den = [1 4 16]; 
w = logspace(-2, 4); 
 h = freqs(num, den, w); 
 f = w/(2*pi); 
 mag = 20*log10(abs(h)); 
 semilogx(f, mag) 
 title('Magnitude Response') 
 xlabel('Frequency, Hz') 
 ylabel('Gain, dB') 
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The frequency response is shown in Figure 6.12. 
 

 
 
 Figure 6.12  Magnitude Response of Equation (6.65) 
 
 
The following example shows how to obtain and plot the frequency response 
of an RLC circuit. 
 
 
Example 6.7 
 
For the RLC circuit shown in Figure 6.13, (a) show that the transfer function is 

 H s
V s
V s

s
R
L

s s
R
L LC

o

i
( )

( )
( )

= =
+ +2 1    (6.66) 

 
(b)  If   L = 5 H, C  = 1.12 µF, and R  = 10000 Ω, plot the frequency re-

sponse.  
(c)  What happens when R  = 100 Ω, but L  and C  remain unchanged? 
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Vi

L C

R Vo(t)

 
 
 
 Figure 6.13  RLC Circuit 
 
Solution 
 
(a)  In the frequency domain,  
 

 H s
V s
V s

R

R sL
sC

sCR
s LC sCRi

( )
( )
( )

= =
+ +

=
+ +

0
21 1

 (6.67) 

which is 

 H s
V s
V s

s
R
L

s s
R
L LC

i
( )

( )
( )

= =
+ +

0

2 1  

 
 
Parts (b) and (c ) are solved using MATLAB. 
 
 
MATLAB Script 

 
% Frequency response of RLC filter 
% 
l = 5;   
c = 1.25e-6;  
r1 = 10000;   
r2 = 100; 
 
num1 = [r1/l 0]; 
den1 = [1 r1/l  1/(l*c)]; 
 
w = logspace(1,4); 
h1 = freqs(num1,den1,w); 
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f = w/(2*pi); 
mag1 = abs(h1); 
phase1 = angle(h1)*180/pi; 
 
num2 = [r2/l 0]; 
den2 = [1  r2/l  1/(l*c)]; 
h2 = freqs(num2,den2,w); 
mag2 = abs(h2); 
phase2 = angle(h2)*180/pi; 
 
% Plot the response 
 
subplot(221), loglog(f, mag1,'.') 
title('magnitude response R=10K') 
ylabel('magnitude') 
 
subplot(222), loglog(f,mag2,'.') 
title('magnitude response R=.1K') 
ylabel('magnitude') 
 
subplot(223), semilogx(f, phase1,'.') 
title('phase response R=10K'),... 
xlabel('Frequency, Hz'), ylabel('angle in degrees') 
 
subplot(224), semilogx(f, phase2,'.') 
title('phase response R=.1K'),... 
xlabel('Frequency, Hz'), ylabel('angle in degrees') 

 

The plots are shown in Figure 6.14.  As the resistance is decreased from 
10,000 to 100 Ohms, the bandwidth of the frequency response decreases and 
the quality factor of the circuit increases. 
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 Figure 6.14  Frequency Response of an RLC Circuit 
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EXERCISES 
 
 
6.1 If v t( )  is periodic with one period of  v t( ) given as   
 

v t e t( ) ( )= − −16 1 6  V    0 2≤ <t  s 
 
(a)   Use MATLAB to find the rms value of  v t( )     
(b)  Obtain the rms value of v t( )  using analytical technique.    

  Compare your result with  that obtained in part (a). 
 (c)  Find the power dissipated in the 4-ohm resistor when the  
  voltage v t( )  is applied across the 4-ohm resistor. 
  

  

v(t) R4 Ohms

 
  
  

Figure P6.1   Resistive Circuit  for part (c) 
 
 
6.2 A balanced Y-Y positive sequence system has phase voltage of the  

source Van = ∠120 00    rms if the load impedance per phase is 
( . )11 4 5+ j Ω, and the transmission line has an impedance per phase 
of ( . )1 0 5+ j Ω. 
 

 (a)    Use analytical techniques to find the magnitude of the line  
  current, and the power delivered to the load. 
 (b)    Use MATLAB to solve for the line current and the power 
  delivered to the load.    
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 (c )         Compare the results of parts (a) and (b). 
 
6.3 For the unbalanced 3-phase system shown in Figure P6.3, find the  

currents I I1 2, , I3 and  hence IbB .  Assume that  Z jA = +10 5 Ω,   
Z jB = +15 7 Ω  and Z jC = −12 3 Ω . 
 

1 Ohm

2 Ohms

1 Ohm

ZA

ZB

I1

I2

I3

C

120   0o V rms

      120   -120o V rms

B

A

      120    120o V rms

a

b

c

ZC

 
 
 Figure P6.3  Unbalanced Three-phase System 
 
 
6.4 For the system with network function 
 

  H s
s s s

s s s s
( ) =

+ + +
+ + + +

3 2

4 3 2

4 16 4
20 12 10

 

 
 find the poles  and zeros of H s( ).  
 
 
6.5 Use MATLAB to determine the roots of the following polynomials.   

Plot the polynomial over the appropriate interval to verify the roots 
location. 
 

  (a) f x x x1
2 4 3( ) = + +  

 
  (b) f x x x x2

3 25 9 5( ) = + + +    
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(c) f x x x x x x3

5 4 3 22 4 12 27 8 16( ) = − − + + −  
 
 

6.6 If  
V s
V s

s
s s

o

i

( )
( )

=
+ +
20

15 23 162 , 

 find  v t0 ( )  given that v t e ti
t( ) . cos( )= +−2 3 5 302 0 . 

 
 
 
6.7 For the circuit of Figure P6.7 

 (a) Find the transfer function  
V s
V s

o

i

( )
( )

. 

(b) If  v t e ti
t( ) cos( )= +−10 105 0 ,  find v t0 ( ) . 

 

 

Vi(t) Vo(t)

2 Ohms 2 H

4 Ohms0.5 F

 
  

Figure P6.7  RLC Circuit 
 
 
6.8 For Figure P6.8,   

(a) Find the transfer function  H s
V s
V s

o

i
( )

( )
( )

= . 

 (b)  Use MATLAB to plot the magnitude characteristics. 
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Vi(t)
Vo(t)

20 kilohms

20 kilohms

100 microfarads

10 microfarads

 
Figure P6.8  Simple Active Filter 
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CHAPTER SEVEN 
 

TWO-PORT  NETWORKS 
 
 
This chapter discusses the application of MATLAB for analysis of  two-port 
networks.  The describing equations for the various two-port network represen-
tations are given.  The use of  MATLAB for solving problems involving paral-
lel, series and cascaded two-port networks  is shown.  Example problems in-
volving both passive and active circuits will be solved using MATLAB. 
 
 
 

7.1 TWO-PORT NETWORK REPRESENTATIONS 
 
A general two-port network is shown in Figure 7.1. 
 

Linear
two-port
network

I2

V2V1

+

-

+

-

I1

 
 
 Figure 7.1   General Two-Port Network 
 
 
I1  and V1  are input current and voltage, respectively.  Also, I2  and V2  are 
output current and voltage, respectively.  It is assumed that the linear two-port 
circuit contains no independent sources of energy and that the circuit is initially 
at rest ( no stored energy).  Furthermore, any controlled sources  within the lin-
ear two-port circuit cannot depend on variables that are outside the circuit.  
 
 
7.1.1  z-parameters 
 
A two-port network can be described by  z-parameters as 
 
 V z I z I1 11 1 12 2= +      (7.1) 
 
 V z I z I2 21 1 22 2= +      (7.2) 
 
In  matrix form, the above equation can be rewritten as 

 

© 1999 CRC Press LLC 

 

© 1999 CRC Press LLC 



 

 
V
V

z z
z z

I
I

1

2

11 12

21 22

1

2









 =


















     (7.3) 

 
The z-parameter can be found as follows 
 

 z
V
I I11

1

1
02

= =       (7.4) 

 

 z
V
I I12

1

2
01

= =       (7.5) 

 

 z
V
I I21

2

1
02

= =       (7.6) 

 

 z
V
I I22

2

2
01

= =       (7.7) 

 
The z-parameters are also called open-circuit impedance  parameters since they 
are obtained as a ratio of voltage and current and the parameters are obtained 
by open-circuiting port 2  ( I2  = 0)  or port1  ( I1  = 0).   The following exam-
ple shows a technique for finding the z-parameters of a simple circuit. 
 
 
Example 7.1 
 
For the T-network shown in Figure 7.2, find the z-parameters. 
 

         

+

-

V1 V2

+

-

I1 I2
Z1 Z2

Z3

 
Figure 7.2  T-Network 
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Solution 
 
Using KVL 
 
 V Z I Z I I Z Z I Z I1 1 1 3 1 2 1 3 1 3 2= + + = + +( ) ( )   (7.8) 
  
 V Z I Z I I Z I Z Z I2 2 2 3 1 2 3 1 2 3 2= + + = + +( ) ( ) ( )  (7.9) 
 
thus 
 

 
V
V

Z Z Z
Z Z Z

I
I

1

2

1 3 3

3 2 3

1

2









 =

+
+


















    (7.10) 

 
and the z-parameters are 
 

 [ ]Z
Z Z Z

Z Z Z=
+

+










1 3 3

3 2 3
    (7.11) 

 
 
7.1.2 y-parameters 
 
A two-port network can also be represented using y-parameters.  The describ-
ing equations are 
 
 I y V y V1 11 1 12 2= +      (7.12) 
 
 I y V y V2 21 1 22 2= +      (7.13) 
where 
 
 V1  and V2  are independent variables and  

I1  and I2  are dependent variables.   
 
In matrix form, the above equations can be rewritten as 
 

 
I
I

y y
y y

V
V

1

2

11 12

21 22

1

2









 =


















     (7.14) 

 
The y-parameters can be found as follows: 
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y
I
V V11

1

1
02

= =       (7.15) 

 

 y
I
V V12

1

2
01

= =       (7.16) 

 

 y
I
V V21

2

1
02

= =       (7.17) 

 

 y
I
V V22

2

2
01

= =       (7.18) 

 
The y-parameters are also called short-circuit admittance parameters.  They are 
obtained as a ratio of current and voltage and the parameters are found by 
short-circuiting port 2 (V2  = 0) or  port 1 (V1  = 0).  The following two exam-
ples show how to obtain the y-parameters of simple circuits. 
 
 
Example 7.2 
 
Find the y-parameters of the pi (π) network shown in Figure 7.3. 

        

+

-

V1 V2

+

-

I1 I2
Yb

Yc
Ya

 
 Figure 7.3   Pi-Network 
 
Solution 
 
Using KCL, we have 
 
 I V Y V V Y V Y Y V Ya b a b b1 1 1 2 1 2= + − = + −( ) ( )   (7.19) 
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 I V Y V V Y V Y V Y Yc b b b c2 2 2 1 1 2= + − = − + +( ) ( )  (7.20) 
 
Comparing Equations (7.19) and (7.20) to Equations (7.12) and (7.13), the y-
parameters are 
 

 [ ]Y
Y Y Y

Y Y Y
a b b

b b c
=

+ −
− +









     (7.21) 

 
 
Example 7.3 
 
Figure 7.4 shows the simplified model of a field effect transistor.  Find its y-
parameters. 
 

+

-

V1 V2

+

-

I1 I2

Y2gmV1C1

C3

 
 Figure 7.4  Simplified Model of  a Field Effect Transistor 
 
 
Using KCL, 
 
I V sC V V sC V sC sC V sC1 1 1 1 2 3 1 1 3 2 3= + − = + + −( ) ( ) ( )  (7.22) 
 
I V Y g V V V sC V g sC V Y sCm m2 2 2 1 2 1 3 1 3 2 2 3= + + − = − + +( ) ( ) ( )
        (7.23) 
 
Comparing the above two equations to Equations (7.12) and (7.13), the y-
parameters are 
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 [ ]Y
sC sC sC
g sC Y sCm

=
+ −
− +











1 3 3

3 2 3
    (7.24) 

 
 
 
7.1.3 h-parameters 
 
A two-port network can be represented using the h-parameters.  The describing 
equations for the h-parameters are 
 
 V h I h V1 11 1 12 2= +      (7.25) 
 
 I h I h V2 21 1 22 2= +      (7.26) 
  
where 
 I1  and V2  are independent variables and  

V1  and I2  are dependent variables. 
 
In matrix form, the above two equations become 
 

 
V
I

h h
h h

I
V

1

2

11 12

21 22

1

2









 =


















     (7.27) 

 
The h-parameters can be found as follows: 
 

h
V
I V11

1

1
02

= =       (7.28) 

 

 h
V
V I12

1

2
01

= =       (7.29) 

 

 h
I
I V21

2

1
02

= =       (7.30) 

 

 h
I
V I22

2

2
01

= =       (7.31) 
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The h-parameters are also called hybrid parameters since they contain both 
open-circuit parameters ( I1  = 0 ) and short-circuit parameters (V2  = 0 ).  The 
h-parameters of a bipolar junction transistor  are determined in the following 
example. 
 
 
Example 7.4 
 
A simplified equivalent circuit of a bipolar junction transistor is shown in Fig-
ure 7.5, find its h-parameters. 

+

-

V1 V2

+

-

I1 I2

Y2I1

Z1

β

 
 
 Figure 7.5  Simplified Equivalent Circuit of a Bipolar Junction  
   Transistor 
 
Solution 
 
Using KCL for port 1, 
 
 V I Z1 1 1=       (7.32) 
 
Using KCL at port 2, we get 
 
 I I Y V2 1 2 2= +β      (7.33) 
 
Comparing the above two equations to Equations (7.25) and (7.26) we get the 
h-parameters. 
 

 [ ]h
Z

Y=










1

2

0
β     ` (7.34) 
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7.1.4 Transmission  parameters 
 
A two-port network can be described by transmission parameters.   The de-
scribing equations are 
   
 V a V a I1 11 2 12 2= −      (7.35) 
 
 I a V a I1 21 2 22 2= −      (7.36) 
 
where 
 V2  and I2 are independent variables and  

V1   and I1   are dependent variables. 
 
In matrix form, the above two equations can be rewritten as 
 

 
V
I

a a
a a

V
I

1

1

11 12

21 22

2

2









 =









 −








     (7.37) 

 
The transmission parameters can be found as 
 

a
V
V I11

1

2
02

= =       (7.38) 

 

 a
V
I V12

1

2
02

= − =      (7.39) 

 

 a
I
V I21

1

2
02

= =       (7.40) 

 

 a
I
I V22

1

2
02

= − =      (7.41) 

 
The transmission parameters express the  primary (sending end) variables V1  
and I1  in terms of the secondary (receiving end) variables V2 and  - I2 .  The 
negative of I2  is used to allow the current to enter the load at the receiving 
end.  Examples 7.5 and 7.6 show some techniques for obtaining the transmis-
sion parameters of  impedance and admittance networks. 
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Example  7.5 
 
Find the transmission parameters of Figure 7.6. 
 

 

+

-

V1 V2

+

-

I1
I2

Z1

 
 
 Figure 7.6  Simple Impedance Network 
 
 
Solution 
 
By inspection, 
 
 I I1 2= −       (7.42) 
 
Using KVL, 
 
 V V Z I1 2 1 1= +       (7.43) 
 
Since I I1 2= − , Equation (7.43) becomes 
 
 V V Z I1 2 1 2= −       (7.44) 
 
Comparing Equations (7.42) and (7.44) to Equations (7.35) and  (7.36), we 
have 
 

 
a a Z
a a

11 12 1

21 22

1
0 1

= =
= =     (7.45) 
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Example 7.6 
 
Find the transmission parameters for the network shown in Figure 7.7. 

+

-

V1
V2

+

-

I1 I2

Y2

 
 
 Figure 7.7  Simple Admittance Network 
 
Solution 
 
By inspection, 
 
 V V1 2=       (7.46) 
 
Using KCL, we have 
 
 I V Y I1 2 2 2= −       (7.47) 
 
Comparing Equations (7.46) and 7.47) to equations (7.35) and (7.36) we have 
 

 
a a
a Y a

11 12

21 2 22

1 0
1

= =
= =     (7.48) 

 
Using the describing equations, the equivalent circuits of the various two-port 
network representations can be drawn.  These are shown in Figure 7.8. 

+

-

V1 V2

+

-

I1
I2

Z11
Z22

Z12 I1 Z21 I1

 
 
    (a) 
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+

-

V1 V2

+

-

I1 I2

Y11 V1 Y22 V2
Y12 V2 Y21 V1

 
 
    (b) 
 

+

-

V1
V2

+

-

I1
I2

h11

h22h12 V2 h21 I1

 
 
    (c ) 
 
 Figure 7.8  Equivalent Circuit of  Two-port Networks (a) z- 
  parameters,  (b) y-parameters and (c ) h-parameters 

 
 
 
 

7.2 INTERCONNECTION OF TWO-PORT NETWORKS 
 
Two-port networks can be connected in series, parallel or cascade.  Figure 7.9 
shows the various two-port interconnections. 

[Z]1

[Z]2

I1 I2

V1

V1'' V2''

V2

V2'V1'+

-

+ +

++

+

----

-

---

- -

- -

 
 

(a)  Series-connected Two-port Network 

 

© 1999 CRC Press LLC 

 

© 1999 CRC Press LLC 



[Y]1

[Y]2

I1 I2

V1 V2

+

-

+

-

I2'I1'

I1'' I2''

 
 

(b)  Parallel-connected Two-port Network 
 

[A]1

I1 I2

V1 V2

+

-

+

-
[A]2

Ix
+
Vx

-
 

   
(c )   Cascade Connection of  Two-port  Network 

 
 Figure 7.9  Interconnection of  Two-port Networks (a) Series    
   (b) Parallel   (c ) Cascade 
 
 
It can be shown that if two-port networks with z-parameters 
[ ] [ ] [ ] [ ]Z Z Z Z n1 2 3, , ...,,  are connected in series, then the equivalent two- 

port z-parameters are given as 

 

 [ ] [ ] [ ] [ ] [ ]Z Z Z Z Zeq n= + + + +1 2 3 ...    (7.49) 

 

If two-port networks with y-parameters [ ] [ ] [ ] [ ]Y Y Y Y n1 2 3, , ...,,  are con-

nected in parallel, then the equivalent two-port y-parameters are given as 
 

 [ ] [ ] [ ] [ ] [ ]Y Y Y Y Yeq n= + + + +1 2 3 ...    (7.50) 

 
When several two-port networks are connected in cascade, and the individual 
networks have transmission parameters [ ] [ ] [ ] [ ]A A A A n1 2 3, , ...,, , then the 

equivalent two-port parameter will have a transmission parameter given as 
 
 [ ] [ ] [ ] [ ] [ ]A A A A Aeq n= 1 2 3* * * ...*    (7.51) 
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The following three examples illustrate the use of MATLAB for determining 
the equivalent parameters of interconnected two-port networks. 
 
 
Example 7.7 
 
Find the equivalent y-parameters for the bridge T-network shown in Figure 
7.10. 
 

Z4

Z1 Z2I1 I2

Z3V1 V2

++

--

 
 
 Figure 7.10  Bridge-T Network 
 
 
Solution 
 
The bridge-T network can be redrawn as 

Z4

Z1 Z2

I1 I2

Z3

N1

N2

V1

V2

+

_

+

-

 
 Figure 7.11  An Alternative Representation of Bridge-T Network 
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From Example 7.1, the z-parameters of network N2 are 
 

 [ ]Z
Z Z Z

Z Z Z
=

+
+











1 3 3

3 2 3
 

  

 
We can convert the z-parameters to y-parameters [refs. 4 and 6] and we get 
 

 

y
Z Z

Z Z Z Z Z Z

y
Z

Z Z Z Z Z Z

y
Z

Z Z Z Z Z Z

y
Z Z

Z Z Z Z Z Z

11
2 3

1 2 1 3 2 3

12
3

1 2 1 3 2 3

21
3

1 2 1 3 2 3

22
1 3

1 2 1 3 2 3

=
+

+ +

=
−

+ +

=
−

+ +

= −
+

+ +

    (7.52) 

 
 
From Example 7.5, the transmission parameters of network N1 are 
 

 
a a Z
a a

11 12 4

21 22

1
0 1

= =
= =

 

 
We convert the transmission parameters to y-parameters[ refs. 4 and 6] and we 
get 
 

 

y
Z

y
Z

y
Z

y
Z

11
4

12
4

21
4

22
4

1

1

1

1

=

= −

= −

=

      (7.53) 
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Using Equation (7.50), the equivalent y-parameters of the bridge-T network 
are 
 

 

y
Z

Z Z
Z Z Z Z Z Z

y
Z

Z
Z Z Z Z Z Z

y
Z

Z
Z Z Z Z Z Z

y
Z

Z Z
Z Z Z Z Z Z

eq

eq

eq

eq

11
4

2 3

1 2 1 3 2 3

12
4

3

1 2 1 3 2 3

21
4

3

1 2 1 3 2 3

22
4

1 3

1 2 1 3 2 3

1

1

1

1

= +
+

+ +

= − −
+ +

= − −
+ +

= +
+

+ +

   (7.54) 

 
 
 
Example 7.8    
   
Find the transmission parameters of Figure 7.12. 

Z1

Y2

 
 
 
 Figure 7.12  Simple Cascaded Network 
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Solution 
 
Figure 7.12 can be redrawn as 
 

Z1

Y2

N1 N2
 

 
 Figure 7.13  Cascade of Two Networks N1 and N2 
 
 
From Example 7.5, the transmission parameters of network N1 are 
 

 
a a Z
a a

11 12 1

21 22

1
0 1

= =
= =  

 
From Example 7.6, the transmission parameters of network N2 are 
 

 
a a
a Y a

11 12

21 2 22

1 0
1

= =
= =  

 
From Equation (7.51), the transmission parameters of  Figure 7.13 are 
 

 
a a
a a

Z
Y

Z Y Z
Y

eq

11 12

21 22

1

2

1 2 1

2

1
0 1

1 0
1

1
1









 =


















 =

+







  (7.55) 
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Example 7.9 
 
Find the transmission parameters for the cascaded system shown in Figure 
7.14.   The resistance values are in Ohms. 

V1 V2

2

2

4 8 16

4 81

I1 I2

N1 N2 N3 N4

+

-

+

_

 
 
 Figure 7.14  Cascaded Resistive Network 
 
 
Solution 
 
Figure 7.14 can be considered as four networks, N1, N2, N3,  and N4 con-
nected in cascade.  From Example 7.8, the transmission parameters of Figure 
7.12 are 
 

 [ ]a N 1

3 2
1 1=









  

   

 [ ]a N 2

3 4
05 1=









.  

 

 [ ]a N 3

3 8
0 25 1=









.  

 

 [ ]a N 4

3 16
0125 1=









.  

 
 
The transmission parameters of Figure 7.14 can be obtained using the follow-
ing MATLAB program. 
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MATLAB Script 
 

diary ex7_9.dat 
% Transmission parameters of cascaded network 
 
a1 = [3 2; 1 1]; 
a2 = [3 4; 0.5 1]; 
a3 = [3 8; 0.25 1]; 
a4 = [3 16; 0.125 1]; 
 
% equivalent transmission parameters 
a = a1*(a2*(a3*a4)) 
diary 

 
The value of matrix a is  

 
a = 
      112.2500    630.0000 
        39.3750    221.0000 

 
 
 
 

7.3 TERMINATED TWO-PORT NETWORKS 
 
In normal applications, two-port networks are usually terminated.  A termi-
nated two-port network is  shown in Figure 7.4. 
 

Zg

Vg ZL

Zin

I1 I2

V1
V2

+

-

+

-

 
 
 Figure 7.15  Terminated  Two-Port Network 
 
In the Figure 7.15, Vg  and Zg   are the source generator voltage and imped-

ance, respectively.  Z L   is the load impedance.  If we use z-parameter  repre-
sentation for the two-port network, the voltage transfer function can be shown 
to be 
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V
V

z Z
z Z z Z z zg

L

g L

2 21

11 22 12 21
=

+ + −( )( )
   (7.56) 

 
and the input impedance,  
 

 Z z
z z

z Zin
L

= −
+11

12 21

22
     (7.57) 

  
and the current transfer function, 
 

 
I
I

z
z Z L

2

1

21

22
= −

+
     (7.58) 

 
A terminated two-port network, represented using the y-parameters,  is shown 
in Figure 7.16. 

Ig
ZL

Yin

I1 I2

V1

V2Yg Vg
[Y]

+

---

+ +

 
 
 Figure 7.16    A Terminated Two-Port Network with y-parameters  
   Representation 
 
 
It can be shown that the input admittance, Yin , is 
 

 Y y
y y

y Yin
L

= −
+11

12 21

22
     (7.59) 

 
and the current transfer function is given as 
 

 
I
I

y Y
y Y y Y y yg

L

g L

2 21

11 22 12 21
=

+ + −( )( )
   (7.60) 

 

 

© 1999 CRC Press LLC 

 

© 1999 CRC Press LLC 



and the voltage transfer function 
 

 
V
V

y
y Yg L

2 21

22
= −

+
     (7.61) 

 
A doubly terminated two-port network, represented by transmission parame-
ters, is shown in Figure 7.17. 
 

Zg

ZL

I1 I2

V1
V2Vg

Zin

[A]+

-

+

-

 
 
 
 Figure 7.17  A Terminated Two-Port Network with Transmission  
   Parameters Representation 
 
 
The  voltage transfer function and the input impedance  of the transmission pa-
rameters can be obtained as follows.   From the transmission parameters, we 
have 
     
 V a V a I1 11 2 12 2= −      (7.62) 
 
 I a V a I1 21 2 22 2= −      (7.63) 
 
From Figure 7.6, 
 
 V I Z L2 2= −       (7.64) 
 
Substituting Equation (7.64) into Equations (7.62) and (7.63), we get the input 
impedance, 
 

 Z
a Z a
a Z ain

L

L
=

+
+

11 12

21 22
     (7.65) 
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From Figure 7.17, we have 
 
 V V I Zg g1 1= −      (7.66) 
 
Substituting Equations (7.64) and (7.66) into Equations (7.62) and (7.63), we 
have 

 V I Z V a
a
Zg g

L
− = +1 2 11

12[ ]     (7.67) 

 

 I V a
a
Z L

1 2 21
22= +[ ]      (7.68) 

 
Substituting Equation (7.68) into Equation (7.67), we get 
 

 V V Z a
a
Z

V a
a
Zg g

L L
− + = +2 21

22
2 11

12[ ] [ ]    (7.69) 

 
Simplifying Equation (7.69), we get the voltage transfer function 
 

 
V
V

Z
a a Z Z a a Zg

L

g L g

2

11 21 12 22
=

+ + +( )
   (7.70) 

 
 
The following examples illustrate the use of MATLAB for solving terminated 
two-port network problems. 
  
 
 
Example 7.10  
 
Assuming that the operational amplifier of Figure 7.18 is ideal,   
(a)  Find the z-parameters of Figure 7.18. 
(b)    If the network is connected by a voltage source with  source  
 resistance of 50Ω  and a load  resistance of 1 KΩ, find the voltage  
 gain. 
(c )  Use MATLAB to plot the magnitude response. 
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I1

I2R2

R1

R4

R3

___1
sC

C = 0.1 microfarads

I3

2 kilohms

10 kilohms

1 kilohms
2 kilohms

V1

V2

+

- -

+

 
 
 Figure 7.18   An Active Lowpass Filter 
 
 
Solution 
 
Using KVL, 

 V R I
I
sC1 1 1

1= +      (7.71) 

 
 V R I R I R I2 4 2 3 3 2 3= + +     (7.72) 
   
From the concept of virtual circuit discussed in Chapter 11, 
 

 R I
I
sC2 3

1=       (7.73) 

 
Substituting Equation (7.73) into Equation (7.72), we get 
 

 
( )

V
R R I

sCR
R I2

2 3 1

2
4 2=

+
+     (7.74) 

 
Comparing Equations (7.71) and (7.74) to Equations (7.1) and (7.2), we have 
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z R
sC

z

z
R
R sC

z R

11 1

12

21
3

2

22 4

1

0

1
1

= +

=

= +






 





=

     (7.75) 

 
From Equation (7.56), we get the voltage gain for a terminated two-port net-
work.  It is repeated here. 
 

 
V
V

z Z
z Z z Z z zg

L

g L

2 21

11 22 12 21
=

+ + −( )( )
    

 
Substituting Equation (7.75)  into Equation (7.56), we have 
 

 
V
V

R
R

Z

R Z sC R Zg

L

L g

2

3

2

4 1

1

1
=

+

+ + +

( )

( )[ ( )]
   (7.76) 

 
For Zg = 50 Ω , Z K R K R K R KL = = = =1 10 1 23 2 4Ω Ω Ω Ω, , ,  

and C F= 01. ,µ  Equation (7.76) becomes 
 

 
V
V sg

2
4

2
1 105 10

=
+ −[ . * ]

    (7.77) 

   
The MATLAB  script is 
 

%  
num = [2]; 
den = [1.05e-4 1]; 
w = logspace(1,5); 
h = freqs(num,den,w); 
f = w/(2*pi); 
mag = 20*log10(abs(h));  % magnitude in dB 
semilogx(f,mag) 
title('Lowpass Filter Response') 
xlabel('Frequency, Hz') 
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ylabel('Gain in dB') 
 
The frequency response is shown in Figure 7.19. 
 

 
 
 Figure 7.19  Magnitude Response of an Active Lowpass Filter 
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EXERCISES 
 
 
7.1 (a)  Find the transmission parameters of the circuit shown in Figure  
        P7.1a.   The resistance values are in ohms. 

  

1 2

4

 
 
  Figure P7.1a  Resistive T-Network 
 

(b)  From the result of part (a), use MATLAB to find the transmission 
parameters of Figure P7.2b.  The resistance  values are in ohms. 

 
21

4 8 16 32

4

4

42 8 328

 
 
  Figure P7.1b  Cascaded Resistive Network 
 
 
7.2 Find the y-parameters of the circuit shown in Figure P7.2 
 The resistance values are in ohms. 
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2

410 4

2

20

10

+

-

V1 V2

I1 I2
+

-
 

 
  Figure P7.2  A Resistive Network 
 
7.3 (a)   Show that for the symmetrical lattice structure shown in  
  Figure P7.3, 
 

   
z z Z Z
z z Z Z

c d

c d

11 22

12 21

05
05

= = +
= = −

. ( )

. ( )  

   
 (b) If  Z Zc d= =10 4Ω Ω, ,    find the equivalent y- 
  parameters. 

Zd

ZC

ZC

Zd  
 
  Figure P7.3  Symmetrical Lattice Structure 
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7.4 (a)  Find the equivalent z-parameters of Figure P7.4. 
(b)  If the network is terminated by  a load of 20 ohms and connected  
to a source of  VS  with a source resistance of 4 ohms, use MATLAB 
to plot the frequency response of the  circuit. 
 

+

-

2 H

0.25 F

5 Ohms

10 Ohms

+

-

2 H

5 Ohms

 
 
  Figure P7.4  Circuit for Problem 7.4 
 
 
7.5 For Figure P7.5 
 (a)  Find the transmission parameters of the RC ladder network. 

(b)  Obtain the expression for 
V
V

2

1
. 

(c)    Use MATLAB to plot the phase characteristics of  
V
V

2

1
 . 

+

-

V1

+

-

V2

R

C

R R

CC

 
 
  Figure P7.5  RC Ladder Network 
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7.6 For  the circuit shown in Figure P7.6, 
 (a)  Find the y-parameters. 
 (b)  Find the expression for the input admittance. 
 (c)  Use MATLAB to plot the input admittance as a function of  
  frequency. 

R3

C

L L R2R1V1 V2

+

-

+

-

I2I2

 
 
 
  Figure P7.6  Circuit for Problem 7.6 
 
 
7.7 For the op amp circuit shown in Figure P7.7, find the y-parameters. 
 

+

-

V1 V2

I1 I2

R3

R1

R2

R4

R5

+

-

 
 
  Figure P7.7   Op Amp Circuit 
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CHAPTER EIGHT 
 

FOURIER ANALYSIS 
 
 
In this chapter, Fourier analysis will be discussed.  Topics  covered are  Fou-
rier series expansion, Fourier transform, discrete Fourier  transform, and fast 
Fourier transform.  Some applications of Fourier analysis, using MATLAB, 
will also be discussed. 
 
 

8.1 FOURIER SERIES 
 
If a function g t( ) is periodic with period Tp , i.e., 
 
 g t g t Tp( ) ( )= ±      (8.1) 
 
and in any finite interval g t( ) has at most a finite number of discontinuities 
and a finite number of maxima and minima (Dirichlets conditions), and in 
addition, 
 

 g t dt
Tp

( ) < ∞∫
0

      (8.2) 

 
then g t( ) can be expressed  with  series of sinusoids.  That is, 

        g t
a

a nw t b nw tn n
n

( ) cos( ) sin( )= + +
=

∞

∑0
0 0

12
  (8.3)  

 
where 

 w
Tp

0

2
=

π
      (8.4) 

 
and the Fourier coefficients an  and bn  are determined by the following equa-
tions.  
 

 a
T

g t nw t dtn
p t

t T

o

o p

=
+

∫
2

0( ) cos( )   n = 0, 1,2, …  (8.5) 
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 b
T

g t nw t dtn
p t

t T

o

o p

=
+

∫
2

0( ) sin( )   n = 0, 1, 2 …  (8.6) 

Equation (8.3) is called the trigonometric Fourier series. The term 
a0

2
 in 

Equation (8.3) is the dc component of the series and is the average value of 
g t( ) over a period.  The term a nw t b nw tn ncos( ) sin( )0 0+  is called the n-
th harmonic.  The first harmonic is obtained when  n = 1.  The latter is also 
called the fundamental with the fundamental frequency of  ωo .  When n = 2, 
we   have the second harmonic and so on. 
 
Equation (8.3) can be rewritten as 
 

g t
a

A nw tn n
n

( ) cos( )= + +
=

∞

∑0
0

12
Θ    (8.7) 

 
where 
 

 A a bn n n= +2 2      (8.8) 
and 

 Θn
n

n

b
a

= −






−tan 1      (8.9) 

 
The total power in g t( ) is given by the Parseval’s equation: 
                                 

 P
T

g t dt A
A

p t

t T

dc
n

no

o p

= = +
+

=

∞

∫ ∑1
2

2 2
2

1
( )    (8.10) 

 
where 

 A
a

dc
2 0

2

2
=





       (8.11) 

 
The following example shows the synthesis of  a square wave using Fourier 
series expansion. 
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Example 8.1 
 
Using Fourier series expansion,  a square wave with a period of 2 ms, peak-to-
peak value of 2 volts and average value of zero volt can be expressed as 
 

g t
n

n f t
n

( )
( )

sin[( ) ]=
−

−
=

∞

∑4 1
2 1

2 1 2 0
1π

π      (8.12)           

 
where  
 

f 0 500=  Hz 
 
if a t( )  is given as 
 

 a t
n

n f t
n

( )
( )

sin[( ) ]=
−

−
=

∑4 1
2 1

2 1 2 0
1

12

π
π   (8.13) 

 
Write a MATLAB program to plot a t( )  from 0 to 4 ms at intervals of  0.05 
ms and to show that a t( )  is a good approximation of g(t). 
 
 
Solution 
 
MATLAB Script 
 

% fourier series expansion 
f = 500; c = 4/pi; dt = 5.0e-05; 
tpts = (4.0e-3/5.0e-5) + 1; 
for n = 1: 12 
for m = 1: tpts 
s1(n,m) = (4/pi)*(1/(2*n - 1))*sin((2*n - 1)*2*pi*f*dt*(m-1)); 
end 
end 
for m = 1:tpts 
 a1 = s1(:,m); 
 a2(m) = sum(a1); 
end 
f1 = a2'; 
t = 0.0:5.0e-5:4.0e-3; 
clg 
plot(t,f1) 
xlabel('Time, s') 
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ylabel('Amplitude, V') 
title('Fourier series expansion') 

 
Figure 8.1 shows the plot of  a t( ) . 

 
 
 Figure 8.1  Approximation to Square Wave 
 
 
By using the Euler’s identity, the cosine and sine functions of Equation (8.3) 
can be replaced by  exponential equivalents, yielding the expression 
 

 g t c jnw tn
n

( ) exp( )=
=−∞

∞

∑ 0       (8.14) 

                                       
where 

 c
T

g t jnw t dtn
p t

T

p

p

= −
−
∫

1

2

2

0( ) exp( )
/

/

   (8.15) 

and 

 w
Tp

0

2
=

π
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Equation (8.14) is termed the exponential Fourier series expansion. The coeffi-
cient cn  is related to the  coefficients an   and  bn of Equations (8.5) and (8.6) 
by the expression 
  

 c a b
b
an n n

n

n
= + ∠ − −1

2
2 2 1tan ( )    (8.16) 

 
In addition, cn  relates to  An and φn  of Equations (8.8) and (8.9) by the rela-
tion 

 c
A

n
n

n= ∠Θ
2

      (8.17) 

The plot of cn  versus frequency is termed the discrete amplitude spectrum or 
the line  spectrum.  It provides information on the amplitude spectral compo-
nents of g t( ).    A similar plot of  ∠ cn   versus frequency is called the dis-
crete phase spectrum and the latter gives information on the phase components 
with respect to the frequency of g t( ) . 
 
If an input signal x tn ( )  
 
 x t c jnw tn n o( ) exp( )=     (8.18) 
 
passes through a system with transfer function H w( ) , then the output of the 
system y tn ( ) is 
 
 y t H jnw c jnw tn o n o( ) ( ) exp( )=    (8.19) 
 
The block diagram of the input/output relation is shown in Figure 8.2. 
 
 

        
H(s)xn(t) yn(t)

 
 
 Figure 8.2  Input/Output Relationship 
 
However, with an input x t( )  consisting of a linear combination of complex 
excitations, 
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 x t c jnw tn
n

n o( ) exp( )=
=−∞

∞

∑     (8.20) 

                                          
the response at the output of the system is 
 

y t H jnw c jnw tn
n

o n o( ) ( ) exp( )=
=−∞

∞

∑    (8.21)     

 
The following two examples show how to use MATLAB  to obtain the coeffi-
cients of Fourier series expansion. 
 
 
Example 8.2 
 
For the full-wave rectifier waveform shown in Figure 8.3, the period is 0.0333s 
and the amplitude is 169.71 Volts.    
(a)    Write a MATLAB program to obtain the exponential Fourier series  
 coefficients cn  for  n =  0,1, 2, .. , 19 
(b)    Find the dc value.      
(c)   Plot the amplitude and phase spectrum. 
   

 
 
 Figure 8.3  Full-wave Rectifier Waveform 
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Solution 
 

diary ex8_2.dat 
% generate the full-wave rectifier waveform 
f1 = 60;   
inv = 1/f1; inc = 1/(80*f1); tnum = 3*inv; 
t = 0:inc:tnum; 
g1 = 120*sqrt(2)*sin(2*pi*f1*t); 
g = abs(g1); 
N = length(g); 
% 
% obtain the exponential Fourier series coefficients 
 
num = 20; 
for i = 1:num 
     for m = 1:N 
      cint(m) = exp(-j*2*pi*(i-1)*m/N)*g(m); 
     end 
  c(i) = sum(cint)/N; 
end 
cmag = abs(c); 
cphase = angle(c); 
 
%print dc value 
disp('dc value of g(t)'); cmag(1) 
% plot the magnitude and phase spectrum 
 
f = (0:num-1)*60; 
subplot(121), stem(f(1:5),cmag(1:5)) 
title('Amplitude spectrum') 
xlabel('Frequency, Hz') 
subplot(122), stem(f(1:5),cphase(1:5)) 
title('Phase spectrum') 
xlabel('Frequency, Hz') 
diary 

 
 
dc value of g(t) 

 
ans = 
         107.5344 
 

Figure 8.4 shows the magnitude and phase  spectra of  Figure 8.3. 
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 Figure 8.4  Magnitude and Phase  Spectra of a Full-wave  
   Rectification Waveform 
 
 
 
Example 8.3 
 
The periodic signal shown in Figure 8.5 can be expressed as 
 

 
g t e t
g t g t

t( )
( ) ( )

= − ≤ <
+ =

−2 1 1
2

    

   
(i)  Show that its exponential Fourier series expansion can be expressed as 
 

 g t
e e

jn
jn t

n

n
( )

( ) ( )
( )

exp( )=
− −

+

−

=−∞

∞

∑ 1
2 2

2 2

π
π   (8.22) 

 
(ii)  Using  a MATLAB program,  synthesize g t( )  using 20 terms, i.e., 
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 g t
e e

jn
jn t

n

n
( )

( ) ( )
( )

exp( )
∧ −

=−
=

− −
+∑ 1

2 2

2 2

10

10

π
π   

   

0 2 4 t(s)

g(t)

1

 
 
 Figure 8.5  Periodic Exponential Signal 
 
 
Solution 
 
(i) 

 g t c jnw tn o
n

( ) exp( )=
=−∞

∞

∑  

 
where 

 c
T

g t jnw t dtn
p T

T

o
p

p

= −
−
∫
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2

2

( ) exp( )
/

/

 

and  

w
To

p
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π π
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 c t jn t dtn = − −
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∫

1
2

2
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1
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 c
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e e

jn
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n

n
( )

( ) ( )
( )

exp( )=
− −

+

−

=−∞

∞

∑ 1
2 2

2 2

π
π  

 
(ii)  MATLAB  Script 

 
% synthesis of g(t) using exponential Fourier series expansion 
dt = 0.05;  
  tpts = 8.0/dt +1; 
cst = exp(2) - exp(-2); 
 
for n = -10:10 
  for m = 1:tpts 
    g1(n+11,m) = ((0.5*cst*((-1)^n))/(2+j*n*pi))*(exp(j*n*pi*dt*(m-
1))); 
  end 
end 
 
for m = 1: tpts 
 g2 = g1(:,m); 
 g3(m) = sum(g2); 
end 
 
g = g3'; 
t = -4:0.05:4.0; 
plot(t,g) 
xlabel('Time, s') 
ylabel('Amplitude') 
title('Approximation of g(t)') 

 
 
Figure 8.6 shows the approximation  of g t( ) . 
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 Figure 8.6  An  Approximation of g t( ) . 
 
 
 

8.2 FOURIER TRANSFORMS 
 
If  g t( )  is  a nonperiodic deterministic signal expressed as a function of time 
t, then the Fourier  transform of g t( ) is given by the integral expression: 

 G f g t j ft dt( ) ( ) exp( )= −
−∞

∞

∫ 2π     (8.23) 

where 
 
 j = −1       and  
 

f   denotes frequency 
 
 
g t( )  can be obtained from the Fourier transform G f( )  by the Inverse Fou-
rier Transform formula: 
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 g t G f j ft df( ) ( ) exp( )=
−∞

∞

∫ 2π     (8.24) 

 
For a signal g t( )  to be Fourier transformable, it should satisfy the Dirichlet’s 
conditions that were discussed in  Section 8.1.   If g t( ) is continuous and non-
periodic, then G f( )  will be continuous and periodic.   However, if  g(t) is 
continuous and periodic, then G f( )  will discrete and nonperiodic;  that is 
 
 g t g t nTp( ) ( )= ±      (8.25) 
 
where 
 Tp = period 
 
then the Fourier transform of g t( )  is 
 

 G f
T

c f
Tp

n
n p

( ) ( )= −
=−∞

∞

∑1 1
δ     (8.26)  

 
where 

 c
T

g t j nf t dtn
p t

T

o
p

p

= −
−
∫

1
2

2

2

( ) exp( )
/

/

π    (8.27)

  
 
8.2.1 Properties of Fourier transform 
 
If g t( )  and G f( )  are Fourier transform pairs, and they are expressed as 
 
 g t G f( ) ( )⇔       (8.28) 
 
then the Fourier transform will have the following properties: 
 
Linearity 
 
 ag t bg t aG f bG f1 2 1 2( ) ( ) ( ) ( )+ ⇔ +    (8.29) 
 
where  

a and b are constants 
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Time scaling 

 g at
a

G
f
a

( ) ⇔ 





1
     (8.30) 

Duality 
 
 G t g f( ) ( )⇔ −      (8.31) 
 
Time shifting 
 
 g t t G f j ft( ) ( ) exp( )− ⇔ −0 02π    (8.32) 
 
Frequency Shifting 
 
 exp( ) ( ) ( )j f t g t G f fC C2 ⇔ −    (8.33) 
 
Definition in the time domain 
 

 
dg t

dt
j fG f

( )
( )⇔ 2π      (8.34) 

 
Integration in the time domain 
 

 g d
j f

G f
G

f
t

( ) ( )
( )

( )τ τ
π

δ
−∞
∫ ⇔ +

1
2

0
2

δ (f)  (8.35) 

 
Multiplication in the time domain 

g t g t G G f d1 2 1 2( ) ( ) ( ) ( )⇔ −
−∞

∞

∫ λ λ λ     (8.36) 

 
Convolution in the time domain 
   

 g g t d G f G f1 2 1 2( ) ( ) ( ) ( )τ τ τ− ⇔
−∞

∞

∫    (8.37) 
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8.3 DISCRETE AND FAST FOURIER TRANSFORMS 
 
Fourier series links a continuous time signal into the discrete-frequency do-
main.  The periodicity of the time-domain signal forces the spectrum to be dis-
crete.  The discrete Fourier transform of a discrete-time signal  g n[ ]  is given 
as 

G k g n j nk N
n

N

[ ] [ ]exp( / )= −
=

−

∑ 2
0

1

π   k  = 0,1, …, N-1 (8.38)            

 
The inverse discrete Fourier transform, g n[ ]  is 
 

 g n G k j nk N
k

N

[ ] [ ]exp( / )=
=

−

∑ 2
0

1

π     n  = 0,1,…, N-1 (8.39) 

 
where 
 
 N is the number of time sequence values of  g n[ ] .  It is also  
  the total number frequency sequence values in G k[ ] . 
 
 T is the time interval between two consecutive samples of the  
  input sequence g n[ ] . 
 
 F is the frequency interval between two consecutive samples  
  of the output sequence G k[ ] . 
 
N, T, and F are related by the expression 
 

 NT
F

=
1

      (8.40) 

   
NT  is also equal to the record length.  The time interval, T, between samples 

should be chosen such  that the Shannon’s Sampling theorem is satisfied. This 
means that T should be less than the reciprocal of  2 f H , where f H  is the 
highest significant frequency component in the continuous time signal g t( )  
from which the sequence  g n[ ]  was obtained.    Several fast DFT algorithms 
require N to be an integer power of 2. 
 
A discrete-time function will have a periodic spectrum.  In DFT, both the time 
function and frequency functions are periodic.  Because of the periodicity of  
DFT, it is common to regard points from  n = 1 through n = N/2 as positive, 
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and points from n = N/2 through n = N - 1 as negative frequencies.  In addi-
tion, since both the time and frequency sequences are periodic,  DFT values at 
points n = N/2 through n = N - 1 are equal to the DFT values at points n = N/2 
through  n = 1. 
 
In general, if the time-sequence is real-valued, then the DFT will have  real 
components  which are even and imaginary components that are odd.  Simi-
larly, for an imaginary valued time sequence, the DFT values will have an odd 
real component and an even imaginary component. 
 
If we define the weighting function WN   as 
 

 W e eN

j
N j FT= =

−
−

2
2

π
π      (8.41) 

   
Equations (8.38) and (8.39) can be re-expressed as 
   

 G k g n WN
kn

n

N

[ ] [ ]=
=

−

∑
0

1

     (8.42) 

 
and 

 g n G k WN
kn

k

N

[ ] [ ]= −

=

−

∑
0

1

     (8.43) 

 
The Fast Fourier Transform, FFT,  is an efficient method  for computing  the 
discrete Fourier transform.  FFT reduces the number of computations needed 
for computing DFT.  For example, if a sequence has  N points,  and N is an in-
tegral power of 2,  then DFT requires N 2  operations, whereas FFT requires 
N

N
2 2log ( ) complex multiplication, 

N
N

2 2log ( )  complex additions and  

N
N

2 2log ( )   subtractions.   For N = 1024, the computational reduction from 

DFT to FFT is more than 200 to 1. 
 
 
The FFT can be used to (a) obtain the power spectrum of a signal, (b) do digi-
tal filtering, and (c) obtain the correlation between two signals.   
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8.3.1  MATLAB function fft 
 
The MATLAB function for performing Fast Fourier Transforms is 
 
 fft x( )  
  
where x  is the vector to be transformed. 
 
 fft x N( , )  
 
is also MATLAB command that can be used to obtain N-point fft.  The vector 
x  is truncated or  zeros are added to N, if necessary. 
 
The MATLAB functions for performing inverse fft is 
 
 ifft x( ).  
 

 [ ]z z fftplot x tsm p, ( , )=  

 
is used to obtain fft and plot the magnitude  zm   and  z p  of DFT of x.   The 
sampling  interval is ts.  Its default value is 1.  The spectra are plotted versus 
the digital frequency F.   The following three examples illustrate usage of  
MATLAB function fft. 
 
 
Example 8.4 
 
Given the sequence   x n[ ]   = ( 1, 2, 1).  (a)    Calculate the DFT of x n[ ] .  (b)    
Use the fft algorithm to find DFT of x n[ ] .   (c)    Compare the results of  (a) 
and (b). 
 
Solution 
 
(a)   From Equation (8.42) 
 

 G k g n WN
kn

n

N

[ ] [ ]=
=

−

∑
0

1

 

 
From Equation (8.41) 
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= = − −
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=

−

−

π

π
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Using Equation (8.41), we have 
 

 G g n W
n

[ ] [ ]0 1 2 1 43
0

0

2

= = + + =
=

∑  

G g n W g W g W g W

j j j

n
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∑
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0
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3
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3
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3
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∑

 

 
(b)   The MATLAB program for performing the DFT of x n[ ]  is 
 
MATLAB Script 

 
diary ex8_4.dat 
% 
x = [1 2 1]; 
xfft = fft(x) 
diary 
 

 
The results are 

 
xfft = 
        4.0000    -0.5000 - 0.8660i      -0.5000 + 0.8660i 

 
(c)   It can be seen that the answers obtained from parts (a) and (b) are  
 identical. 
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Example 8.5 
 
Signal g t( )  is given as 
 

 [ ]g t e t u tt( ) cos ( ) ( )= −4 2 102 π  
 
(a)     Find the Fourier transform of  g t( ) , i.e.,  G f( ) . 
(b)     Find the DFT of  g t( )  when the sampling interval is 0.05 s  with N  
 = 1000. 
(c)     Find the DFT of g t( )  when the sampling interval is 0.2 s with  N =  
 250. 
(d)    Compare the results obtained from parts a, b, and  c. 
 
 
Solution 
 
(a)  g t( )  can be expressed as 
 

 g t e e e u tt j t j t( ) ( )= +





− −4
1
2

1
2

2 20 20π π  

 
Using the frequency shifting property of the Fourier Transform, we get 
 

 G f
j f j f

( )
( ) ( )

=
+ −

+
+ +

2
2 2 10

2
2 2 10π π

 

 
(b, c)  The MATLAB program for computing the DFT of g t( )  is  
 
MATLAB Script 
 

% DFT of g(t) 
%  Sample 1, Sampling interval of 0.05 s 
ts1 = 0.05;   % sampling interval 
fs1 = 1/ts1;  %  Sampling frequency 
n1 = 1000;     %  Total Samples 
m1 = 1:n1;    %  Number of bins 
sint1 = ts1*(m1 - 1);  %  Sampling instants 
freq1 = (m1 - 1)*fs1/n1;  % frequencies  
gb = (4*exp(-2*sint1)).*cos(2*pi*10*sint1); 
gb_abs = abs(fft(gb)); 
subplot(121) 
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plot(freq1, gb_abs) 
title('DFT of g(t), 0.05s Sampling interval') 
xlabel('Frequency (Hz)') 
 
%  Sample 2,  Sampling interval of 0.2 s 
ts2 = 0.2;   % sampling interval 
fs2 = 1/ts2;  %  Sampling frequency 
n2 = 250;     %  Total Samples 
m2 = 1:n2;    %  Number of bins 
sint2 = ts2*(m2 - 1);  %  Sampling instants 
freq2 = (m2 - 1)*fs2/n2;  % frequencies  
gc = (4*exp(-2*sint2)).*cos(2*pi*10*sint2); 
gc_abs = abs(fft(gc)); 
subplot(122) 
plot(freq2, gc_abs) 
title('DFT of g(t), 0.2s Sampling interval') 
xlabel('Frequency (Hz)') 

 
The two plots  are shown in  Figure 8.7. 
 

 
 
 Figure 8.7  DFT of  g t( )  
 
(d)  From Figure 8.7, it can be seen that with the sample interval of 0.05 s, 

there was no aliasing and spectrum of G k[ ] in part (b) is almost the same 
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as that  of G f( )  of part (a).   With the sampling interval being 0.2 s (less 
than the Nyquist rate), there is aliasing and the spectrum of G k[ ]  is dif-
ferent from that of G f( ) . 

 
 
Example 8.6 
 
Given a noisy signal 
 
 g t f t n t( ) sin( ) . ( )= +2 0 51π  
 
where  

f1   =  100 Hz 
 
n(t) is a normally distributed white noise.  The duration of  g t( ) is 0.5 sec-
onds.  Use MATLAB function rand to generate the noise signal.    Use 
MATLAB to obtain the power spectral density of  g t( ) . 
 
 
Solution 
 
A representative program that can be used to plot the noisy signal and obtain 
the power spectral  density is 
 
MATLAB Script 

 
% power spectral estimation of noisy signal 
t = 0.0:0.002:0.5; 
f1 =100; 
 
% generate the sine portion of signal 
x = sin(2*pi*f1*t); 
 
% generate a normally distributed white noise 
n = 0.5*randn(size(t)); 
 
% generate the noisy signal 
y = x+n; 
subplot(211), plot(t(1:50),y(1:50)), 
title('Nosiy time domain signal') 
 
% power spectral estimation is done 
yfft = fft(y,256); 
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len = length(yfft); 
pyy = yfft.*conj(yfft)/len; 
f = (500./256)*(0:127); 
 
subplot(212), plot(f,pyy(1:128)), 
title('power spectral density'), 
xlabel('frequency in Hz') 

 
 
The plot of the noisy signal and its spectrum is shown in Figure 8.8.  The am-
plitude of the noise and the sinusoidal signal can be changed to observe their 
effects on the spectrum. 
 

 
 
 Figure 8.8  Noisy Signal and Its Spectrum 
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EXERCISES   
 
 
8.1 The triangular waveform, shown in Figure P8.1 can be expressed as 
 

 ( )g t
A

n
n w t

n

n
( )

( )
cos ( )=

−
−

−
+

=

∞

∑8 1
4 1

2 12

1

2
1

0π
 

  
where 

  w
Tp

0

1
=  

 

Tp
2Tp

A

-A

g(t)

 
 
  Figure P8.1  Triangular Waveform 
 

If A  = 1,  T  = 8 ms, and sampling interval  is 0.1 ms. 
 

(a)     Write MATLAB program to resynthesize  g t( )  if 20  
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 terms are used. 
 
(b)     What is the root-mean-squared value of the function that is  

  the difference between g t( )  and the approximation to   
  g t( )  when 20 terms are used for the calculation of g t( ) ? 
 
8.2 A periodic pulse train  g t( )  is shown in Figure P8.2. 
 

       1 2 3 4 5 6 7 8

4

g(t)

t(s)
0  

 
  Figure P8.2  Periodic Pulse Train 
 
  

If   g t( )  can be expressed by Equation (8.3) ,  
(a)    Derive expressions for determining the Fourier Series coeffi-
cients an  and bn .         
 
(b)    Write a MATLAB program to obtain an  and bn    for  n = 0 ,  
 1, ......, 10   by using Equations (8.5) and (8.6). 
 
(c)     Resynthesis g(t) using 10 terms of  the values an , bn     

   obtained from part (b). 
 
8.3 For the half-wave rectifier waveform, shown in Figure P8.3, with a  
 period of 0.01 s and a peak voltage of 17 volts. 
 

(a)     Write a MATLAB program to obtain the exponential  
 Fourier series coefficients cn  for  n =  0, 1, ......., 20. 
 
(b)     Plot the amplitude spectrum. 
 
(c)    Using the values obtained in (a),  use MATLAB to  

  regenerate the approximation to g t( )   when 20 terms of the  
  exponential Fourier series are used. 
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  Figure P8.3  Half-Wave Rectifier Waveform 
 
8.4 Figure P8.4(a)  is a periodic triangular waveform. 
 

    

v(t)

-2 0 2 4 6 t(s)

2

 
 
 Figure P8.4(a)  Periodic Triangular Waveform 
 

(a)    Derive the Fourier series coefficients an  and bn  . 
 
(b)   With the signal v t( )  of the circuit shown in P8.4(b),   
 derive the expression for the current i t( ) . 
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V(t)

VL(t)

VR(t)

4 H

3Ω

i(t)

 
  Figure P8.4(b)  Simple RL Circuit 
 

(c)      Plot the voltages v tR ( ),  v tL ( )  and also the sum of  
 v tR ( )  and v tL ( ).  
 
(d)           Compare the voltages of v tR ( )  + v tL ( )   to V(t). 

 
 
8.5 If the periodic waveform shown in Figure 8.5 is the input of the  
 circuit shown in Figure P8.5. 

(a)      Derive the mathematical expression for v tC ( ).  
 
(b)       Use MATLAB to plot the signals g t( )  and v tC ( ).  

 

     

VC(t)

8 Ω

4 Ω 2 Fg(t)

 
  Figure P8.5  RC Circuit 
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8.6 The unit sample response of a filter  is given as 
 

  ( )h n[ ] = − −0 1 1 0 1 1 0  
 

(a)      Find the discrete Fourier transform of h n[ ] ;  assume that  
 the values of h n[ ]  not shown are zero. 

(b)      If the input to the filter is x n
n

u n[ ] sin [ ]= 



8

,  find the  

  output of the filter. 
 
 
8.7 g t t t( ) sin( ) sin( )= +200 400π π     
 

(a)     Generate 512 points of  g t( ).   Using the FFT  algorithm,  
 generate and plot the frequency   content of  g t( ) .   
 Assume a sampling rate of 1200 Hz.  Find the power  
 spectrum. 
 
(b)     Verify that the frequencies in  g t( )  are  observable  in the  

  FFT plot. 
 
 
8.8 Find the DFT of 
 
  g t e u tt( ) ( )= −5  
   

(a)     Find the Fourier transform of  g t( ) . 
 
(b)     Find the DFT of g t( ) using the sampling interval of 0.01 s  
 and time duration of 5 seconds. 
 
(c)          Compare the results obtained from parts (a) and (b). 
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CHAPTER NINE 
 

DIODES 
 
 
In this chapter, the characteristics of diodes  are presented.   Diode circuit 
analysis techniques  will be discussed.   Problems involving diode circuits are 
solved using MATLAB. 
 
 

 
9.1 DIODE CHARACTERISTICS 

 
Diode is a two-terminal device.  The electronic symbol of a diode is shown  in 
Figure 9.1(a).   Ideally, the diode conducts current in one direction.  The cur-
rent versus voltage characteristics of an ideal diode are shown in Figure 9.1(b). 
 
 

i

anode cathode

     
 
    (a) 
 

             

i

v
 

    (b) 
 
  Figure 9.1   Ideal Diode    (a) Electronic Symbol  
    (b) I-V Characteristics 
 
 
The I-V characteristic of a semiconductor junction diode is shown in Figure 
9.2.  The characteristic is divided into three regions:  forward-biased, reversed-
biased, and the breakdown. 
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i

v0

reversed-
biased

forward-
biased

breakdown

 
 
 Figure 9.2   I-V Characteristics of a Semiconductor Junction Diode 
 
 
In the forward-biased and  reversed-biased regions, the current, i,  and the 
voltage, v,  of a  semiconductor diode are related by the diode equation  
 
 i I eS

v nVT= −[ ]( / ) 1      (9.1) 
 
where 
 
 I S   is reverse saturation current or leakage current, 
 n    is an empirical constant between 1 and 2, 
 VT    is thermal voltage, given by 
 

  V
kT
qT =      (9.2) 

 and 
  

k   is Boltzmann’s constant  = 138 10 23. x − J / oK, 
 q  is the electronic charge  =  16 10 19. x −  Coulombs, 
 T  is the absolute temperature in oK 
 
At room temperature (25 oC), the thermal voltage is about 25.7 mV. 
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9.1.1 Forward-biased region 
 
In the forward-biased region, the voltage across the diode is positive.  If we 
assume that the voltage across the diode is greater than  0.1 V at room 
temperature, then Equation (9.1) simplifies to 
 
 i I eS

v nVT= ( / )       (9.3) 
 
For a particular operating point of the diode ( i I D=  and v VD= ),  we have 
 
 i I eD S

v nVD T= ( / )      (9.4) 
 
To obtain the dynamic resistance of the diode at a specified operating point, we 
differentiate Equation (9.3) with respect to v,  and we have  
 

 
di
dv

I e
nV

s
v nV

T

T

=
( / )

      

    

 
di
dv

I e
nV

I
nVv V

s
v nV

T

D

T
D

D T

= = =
( / )

    

  
 
and the dynamic resistance of the diode, rd , is  
 

 r
dv
di

nV
Id v V

T

D
D

= ==      (9.5) 

 
From Equation (9.3), we have 
 

 
i
I

e
S

v nVT= ( / )  

thus 

 ln( ) ln( )i
v

nV
I

T
S= +      (9.6) 

 
Equation (9.6) can be used to obtain the diode constants n and I S , given the 
data that consists of the corresponding values of voltage and current.  From 
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Equation (9.6), a curve of v  versus ln( )i  will have a slope given by  
1

nVT
 

and  y-intercept of ln( )IS .    The following example illustrates how to find n  
and I S from an experimental data.  Since the example requires curve fitting, 
the MATLAB function polyfit will be covered before doing the example. 
 
 
9.1.2 MATLAB function polyfit 
 
The polyfit function is used to compute the best fit of a set of data points  to a  
polynomial with a specified degree.  The general form of the function is 
 
 coeff xy polyfit x y n_ ( , , )=     (9.7) 
 
where  
 x  and y  are the data points. 
 
 n  is the nth  degree polynomial that will fit the vectors x  and y.  
 
 coeff xy_  is a polynomial that fits the data in vector y  to x  in the  

least square sense.  coeff xy_  returns n+1 coeffi-
cients in descending powers of x.  

 
Thus, if the polynomial fit to data in vectors x  and y  is given as 
 
 coeff xy x c x c x cn n

m_ ( ) ...= + + +−
1 2

1  
 
The degree of the polynomial is n and the number of coefficients m n= +1 
and the coefficients ( , , ..., )c c cm1 2  are returned by the MATLAB polyfit 
function. 
 
 
 
Example 9.1 

A forward-biased diode has the following  corresponding voltage and current. 
Use MATLAB to determine the reverse saturation current, I S   and diode pa-
rameter n. 
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0.1 0.133e-12 

0.2 1.79e-12 

0.3 24.02e-12 

0.4 0.321e-9 

0.5 4.31e-9 

0.6 57.69e-9 

0.7 7.726e-7 
 
 
Solution 

 
diary ex9_1.dat 
% Diode  parameters 
 
vt = 25.67e-3; 
v = [0.1 0.2 0.3 0.4 0.5 0.6 0.7]; 
i = [0.133e-12 1.79e-12 24.02e-12 321.66e-12 4.31e-9 57.69e-9 
772.58e-9]; 
 
% 
lni = log(i); % Natural log of current 
 
% Coefficients of Best fit linear model is obtained 
p_fit = polyfit(v,lni,1); 
 
% linear equation is   y = m*x + b 
b = p_fit(2); 
m = p_fit(1); 
ifit = m*v + b; 
 
% Calculate Is and n 
Is = exp(b) 
n = 1/(m*vt) 
 
% Plot v versus ln(i), and best fit linear model 
plot(v,ifit,'w', v, lni,'ow') 
axis([0,0.8,-35,-10]) 

Forward Voltage, V                Forward Current, A 
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xlabel('Voltage (V)') 
ylabel('ln(i)') 
title('Best fit linear model') 
diary 

 
 
The results obtained from MATLAB are 
 

Is  =   9.9525e-015 
 
n  =       1.5009 

 
Figure 9.3  shows the best fit linear model used to determine the reverse satura-
tion current, IS ,   and diode parameter, n. 
 
 

 
   

 Figure 9.3  Best Fit Linear Model of Voltage versus  Natural  
   Logarithm of Current 
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9.1.3 Temperature effects 
 
From the  diode equation  (9.1), the thermal voltage and the reverse saturation 
current are temperature dependent.  The thermal voltage is directly propor-
tional to temperature.  This is expressed in Equation (9.2).   The reverse satura-
tion current I S  increases approximately 7.2% /oC for both silicon and germa-
nium  diodes.  The expression for the reverse saturation current as a function of 
temperature is  
 
 I T I T eS S

k T TS( ) ( ) [ ( )]
2 1

2 1= −     (9.8) 
 
where 
 kS  =   0.072  / o C. 
 T1  and  T2  are two different temperatures.    
 
Since e0 72.  is approximately  equal to  2,  Equation (9.8) can be simplified and 
rewritten  as 
 
 I T I TS S

T T( ) ( ) ( )/
2 1

102 2 1= −     (9.9) 
 
 
Example 9.2 
 
The saturation current of a diode at 25 oC  is  10 -12  A.  Assuming that the 
emission constant of the diode is 1.9,  (a)  Plot the i-v  characteristic of the di-
ode at the following temperatures:   T1  =  0 oC, T2  = 100 oC.  
 
Solution 
 
MATLAB Script 

 
% Temperature effects on diode characteristics 
% 
k = 1.38e-23; q = 1.6e-19; 
t1 = 273 + 0; 
t2 = 273 + 100; 
 
ls1 = 1.0e-12; 
ks = 0.072; 
ls2 = ls1*exp(ks*(t2-t1)); 

 
v = 0.45:0.01:0.7; 
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l1 = ls1*exp(q*v/(k*t1)); 
l2 = ls2*exp(q*v/(k*t2)); 
 
plot(v,l1,'wo',v,l2,'w+') 
axis([0.45,0.75,0,10]) 
title('Diode I-V Curve at two Temperatures') 
xlabel('Voltage (V)') 
ylabel('Current (A)') 
text(0.5,8,'o is for 100 degrees C') 
text(0.5,7, '+ is for 0 degree C') 

 
Figure 9.4 shows the temperature effects of the diode forward characteristics. 
 
 
 

 
  

Figure 9.4  Temperature Effects on the Diode Forward  
   Characteristics 
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9.2 ANALYSIS OF DIODE CIRCUITS 
 
Figure 9.5 shows a diode circuit consisting of a dc source VDC ,  resistance R , 
and a diode.   We want to determine the  diode current I D  and the diode volt-
age VD .  

  

VDC

ID

VD

R

+

-

+

-

 
 
 Figure 9.5  Basic Diode Circuit 
 
 
Using Kirchoff Voltage Law, we can write the loadline equation 
 
 V RI VDC D D= +      (9.10) 
 
The diode current and voltage will be related by  the diode equation 
 
 i I eD S

v nVD T= ( / )      (9.11) 
 
Equations (9.10) and (9.11) can be used to solve for the current I D    and volt-
age VD .  
 
There are several approaches for solving I D   and VD .    In one approach, 
Equations  (9.10) and  (9.11) are plotted and the intersection of the linear curve 
of Equation  (9.10) and the nonlinear curve of  Equation (9.11)  will be the op-
erating point of the diode.  This is illustrated by the following example. 
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Example 9.3 
 
For the circuit shown in Figure 9.5, if  R  = 10 kΩ , VDC    =  10V, and the 
reverse saturation current of the diode is 10 -12 A  and  n = 2.0.   (Assume  a 
temperature  of  25 oC.) 
 
(a)  Use MATLAB to plot the diode forward characteristic curve  and the  
 loadline. 
 
(b)   From the plot estimate the operating point of the diode. 
 
 
Solution 
 
MATLAB Script 
 

% Determination of operating point using  
% graphical technique 
% 
% diode equation 
k = 1.38e-23;q = 1.6e-19;  
t1 = 273 + 25; vt = k*t1/q; 
v1 = 0.25:0.05:1.1; 
i1 = 1.0e-12*exp(v1/(2.0*vt)); 
 
% load line 10=(1.0e4)i2 + v2 
vdc = 10; 
r = 1.0e4; 
v2 = 0:2:10; 
i2 = (vdc - v2)/r; 
 
% plot 
plot(v1,i1,'w', v2,i2,'w') 
axis([0,2, 0, 0.0015]) 
title('Graphical method - operating point') 
xlabel('Voltage (V)') 
ylabel('Current (A)') 
text(0.4,1.05e-3,'Loadline') 
text(1.08,0.3e-3,'Diode curve') 

 
Figure 9.6 shows the intersection of the diode forward characteristics and the 
loadline.   
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Figure 9.6  Loadline and Diode Forward Characteristics 
 
 
From Figure 9.6, the operating point of the diode is the intersection of the 
loadline and the diode forward characteristic curve.  The operating point is ap-
proximately 
 
  I D = 0 9.  mA 
  VD = 0 7.  V  
 
The second approach  for obtaining the diode current I D   and diode voltage 

VD   of Figure 9.5 is to use  iteration.  Assume that  ( )I VD D1 1,  and  

( )I VD D2 2,  are two corresponding points on the diode forward characteris-
tics.  Then,  from Equation (9.3), we have 
 
 i I eD S

v nVD T
1

1= ( / )      (9.12) 
 
 i I eD S

v nVD T
2

2= ( / )      (9.13) 
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Dividing Equation (9.13) by  (9.12), we have 
 

 
I
I

eD

D

V V nVD D T2

1

2 1= −( / )      (9.14) 

 
Simplifying  Equation (9.14), we have 
 

 v v nV
I
ID D T

D

D
2 1

2

1
= +







ln     (9.15) 

 
Using iteration, Equation (9.15) and the loadline Equation (9.10) can be used   
to obtain the operating point of the diode. 
 
To show how the iterative technique is used, we assume that I D1  =  1mA  and  
VD1    = 0.7 V.  Using Equation  (9.10), I D2   is calculated by  
 

 I
V V

RD
DC D

2
1=

−
     (9.16) 

 
Using Equation (9.15), VD2  is calculated by  
 

 V V nV
I
ID D T

D

D
2 1

2

1
= +







ln     (9.17) 

 
Using Equation (9.10),  I D3  is calculated by  
 

 I
V V

RD
DC D

3
2=

−
     (9.18) 

 
Using Equation (9.15) ,  VD3  is calculated by  
 

 V V nV
I
ID D T

D

D
3 1

3

1
= +







ln     (9.19) 

 
Similarly,  I D4    and VD4   are calculated by 
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 I
V V

RD
DC D

4
3=

−
     (9.20) 

 V V nV
I
ID D T

D

D
4 1

4

1
= + ln( )     (9.21) 

 
The iteration is stopped when VDn  is approximately equal to VDn−1   or  I Dn  
is approximately equal to I Dn−1   to the desired decimal points.  The iteration 
technique is particularly facilitated  by using computers.  Example 9.4 illus-
trates the use of MATLAB for doing the iteration technique. 
 
 
Example 9.4 
 
Redo Example 9.3 using the iterative technique.  The iteration can be stopped 
when the current and previous value of the diode voltage are different by 10 7−  
volts. 
 
 
Solution 
 
MATLAB Script 
 

% Determination of diode operating point using  
% iterative method 
k = 1.38e-23;q = 1.6e-19;  
t1 = 273 + 25; vt = k*t1/q; 
vdc = 10; 
r = 1.0e4; 
n = 2; 
id(1) = 1.0e-3; vd(1) = 0.7; 
reltol = 1.0e-7; 
i = 1; 
vdiff = 1; 
while vdiff > reltol 
  id(i+1) = (vdc - vd(i))/r; 
  vd(i+1) = vd(i) + n*vt*log(id(i+1)/id(i)); 
  vdiff = abs(vd(i+1) - vd(i)); 
  i = i+1; 
end 
k = 0:i-1; 
% operating point of diode is (vdiode, idiode) 
idiode = id(i) 
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vdiode = vd(i) 
% Plot the voltages during iteration process 
plot(k,vd,'wo') 
axis([-1,5,0.6958,0.701])  
title('Diode Voltage during Iteration') 
xlabel('Iteration Number') 
ylabel('Voltage, V') 

 
 
From the MATLAB program, we have 
 

idiode = 
   9.3037e-004 
 
vdiode = 
               0.6963 

 
Thus I D = 0 9304.  mA and  VD = 0 6963.  V.   Figure 9.7 shows the diode 
voltage during the iteration process.   
 

 
  

Figure 9.7  Diode Voltage during Iteration Process 
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9.3 HALF-WAVE RECTIFIER 
 
 
A half-wave rectifier circuit is shown in Figure 9.8.  It consists of an alternat-
ing current (ac) source, a diode and a resistor. 
 

 

Vo
R

Vs

+
+

-
-

 
 Figure 9.8  Half-wave Rectifier Circuit 
 
 
Assuming that the diode is ideal, the diode conducts when source voltage is 
positive, making 
 
 v vS0 =   when  vS   ≥  0    (9.22) 
 
When the source voltage is negative, the diode is cut-off, and the output volt-
age is 
 
 v0 0=    when vS   <  0    (9.23) 
 
Figure 9.9 shows the input and output waveforms when the input signal is a 
sinusoidal signal. 
 
 
The battery charging circuit, explored in the following example,  consists of  a 
source connected to a battery through a resistor and a diode. 
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 Figure 9.9  (a) Input and (b) Output Waveforms of a Half-wave  
   Rectifier Circuit 
 
 
Example 9.5 
 
A battery charging circuit is shown in Figure 9.10.  The battery voltage is 
VB = 118.   V.  The source voltage is v t tS ( ) sin( )= 18 120π  V and the  
resistance is  R  =  100 Ω.   Use  MATLAB  (a) to sketch the input voltage,  (b)   
to plot the current flowing through the diode,  (c )  to calculate the conduction 
angle of the diode, and  (d) calculate the peak current.   (Assume that the diode 
is ideal.) 

           

iD
VB

R

Vs

+

-

 
 
 Figure 9.10  A Battery Charging Circuit 
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Solution: 
 
When the input voltage vS  is greater than VB ,  the diode conducts and the di-
ode current, id , is given as 
 

 i
V V

Rd
S B=

−
      (9.24) 

 
The diode starts conducting at an angle θ, given by  v VS B≥ ,   i.e., 
 
 18 18 120 1181 1sin sin( ) .θ π= = =t VB  
 
The diode stops conducting current when vs  ≤   VB    
 
 18 18 1202 2sin sin( )θ π= =t VB  
 
due to the symmetry    
 
 θ π θ2 1= −  
 
 
MATLAB  Program: 
 

diary ex9_5.dat 
% Baltery charging circuit 
period = 1/60; 
 period2 = period*2; 
inc =period/100; 
npts = period2/inc; 
vb = 11.8; 
 
t = []; 
for i = 1:npts 
  t(i) = (i-1)*inc; 
  vs(i) = 18*sin(120*pi*t(i)); 
    if vs(i) > vb 
     idiode(i) = (vs(i) -vb)/r; 
    else 
     idiode(i) = 0; 
    end 
end 
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subplot(211), plot(t,vs) 
%title('Input Voltage') 
xlabel('Time (s)') 
ylabel('Voltage (V)') 
text(0.027,10, 'Input Voltage') 
subplot(212), plot(t,idiode) 
%title('Diode Current') 
xlabel('Time (s)') 
ylabel('Current(A)') 
text(0.027, 0.7e-3, 'Diode Current') 
 
% conduction angle 
theta1 = asin(vb/18); theta2 = pi - theta1; 
acond = (theta2 -theta1)/(2*pi) 
% peak current 
pcurrent = (18*sin(pi/2) - vb)/r 
% pcurrent = max(idiode) 
diary 

 
The conduction angle, acond, and the peak current, pcurrent,  are 
 

acond = 
             0.2724 
 
pcurrent = 
                 0.0620 

 
Figure 9.11 shows the input voltage and  diode current. 
 
The output of the  half-wave rectifier circuit of  Figure 9.8 can be smoothed by 
connecting a capacitor across the load resistor.  The smoothing circuit is shown 
in Figure 9.12. 
 
When the amplitude of the source voltage VS  is greater than the output volt-
age, the diode conducts  and the capacitor is charged.  When the source voltage 
becomes less than the output voltage,  the diode is cut-off and  the  capacitor 
discharges with the time constant CR.  The output voltage and the diode cur-
rent waveforms are shown in Figure 9.13.   
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 Figure 9.11  Input Voltage and Diode Current 
 
 
 
 
 
 

id

Vs
VoCR

++

-
-

 
 
 Figure 9.12  Capacitor Smoothing Circuit 
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Vo

Vm

t1 t2 t3 t4 t

T

iD

t1 t2 t3 t4 t  
 

Figure 9.13    (a) Output Voltage and (b) Diode Current for Half- 
   wave Rectifier with Smoothing Capacitor Filter 
  
 
In Figure 9.12(a),  the output voltage reaches the maximum voltage  Vm , at 
time t t= 2  to  t t= 3 , the diode conduction ceases, and capacitor  discharges 
through  R.  The output voltage between times  t2   and t3 is given as 
 

 v t V em

t t
RC

0

2

( ) =
−

−



   t2 <  t  <  t3   (9.25) 

 
The peak to peak ripple voltage is defined as 
 

 
V v t v t V V e

V e

r m m

t t
RC

m

t t
RC

= − = −

= −












−
−





−
−





0 2 0 3

3 2

3 2

1

( ) ( )
  (9.26) 

 

For large values C such that CR >> ( )t t3 2− , we can use the well-known ex-
ponential series approximation 
 
 e xx− ≅ −1  for  x  << 1 
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Thus, Equation (9.26) approximates to  
 

 V
V t t

RCr
m=

−( )3 2      (9.27) 

The discharging time for the capacitor,  ( )t t3 2− , is approximately equal to 
the period of the input ac signal,  provided the time constant is large.  That is,  
 

 t t T
f3 2

0

1
− ≅ =      (9.28) 

 
where 
 f 0  is the frequency of the input ac source voltage. 
 
Using Equation (9.28), Equation (9.27) becomes 
 

 V
V

f CRr peak to peak
m

( )− − =
0

     (9.29) 

      
For rectifier circuits, because  RC >> T , the output voltage decays for a small 
fraction of its fully charged voltage, and the output voltage may be regarded as 
linear.   Therefore,  the output  waveform of  Figure 9.12  is approximately tri-
angular.  The rms value of the triangular wave is given by 
 

 V
V V

f CRrms
peak to peak m

o

= =− −

2 3 2 3
   (9.30) 

 
The approximately dc voltage of the output waveform is 
 

 V V
V

V
V
f CRdc m

r
m

m

o
= − = −

2 2
    (9.31) 

 
 
 
9.3.1 MATLAB function fzero 
 
The MATLAB fzero is used to obtain the zero of a function of one  variable.  
The general form of the fzero function is 
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fzero function x
fzero function x tol

(' ' , )
(' ' , , )

1
1  

 
where 
 
 fzero funct x(' ' , )1  finds the zero of the function funct x( )  that  
    is near the point x1. 
  

fzero funct x tol(' ' , , )1  returns  zero of the function funct x( )   
    accurate to within a relative error of  tol.  
 
 
The MATLAB function fzero is used in the following example. 
 
 
 
Example 9.6 
 
For a capacitor smoothing circuit of  Figure 9.12,  if R = 10KΩ,  C = 100µF, 
and v t tS ( ) sin( )= 120 2 120π ,   
(a)   use MATLAB to calculate the times t2 , t3 ,  of  Figure 9.12; 
(b)   compare the capacitor discharge time with period of the input signal. 
 
 
Solution 
 

The maximum value of  v tS ( )  is 120 2 , and it occurs at 120
22π
π

t = , 

thus 

 t2

1
240

0 00417= = . s 

 
The capacitor discharge waveform is given by 
 

 v t
t t
RCC ( ) exp

( )
= −

−



120 2 2  t t t2 3< <  

 
At t t= 3     v t v tC S( ) ( )= ,   
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Defining v t( )  as 

 ( )v t t t
t t
RCp( ) sin ( ) exp

( )
= − − −

−



120 2 120 120 2 2π  

Then, 

( )v t t t
t t

RCp( ) sin ( ) exp
( )

3 3
3 20 120 2 120 120 2= = − − −

−



π  

 
Thus, 

 ( )v t t t
t t

RCp( ) sin ( ) exp
( )

3 3
3 20 120= = − − −

−



π  (9.32) 

    
MATLAB is used to solve Equation (9.32) 
 
MATLAB Script 
 

diary ex9_6.dat 
% Capacitance discharge time for smoothing capacitor 
% filter circuit 
vm = 120*sqrt(2); 
f0 = 60; r =10e3; c = 100e-6; 
t2 = 1/(4*f0); 
tp = 1/f0; 
 
% use MATLAB function fzero to find the zero of a 
% function of one variable 
rc = r*c; 
t3 = fzero('sinexpf1',4.5*t2); 
tdis_cap = t3- t2; 
fprintf('The value of t2 is %9.5f  s\n', t2) 
fprintf('The value of t3 is %9.5f s\n', t3) 
fprintf('The capacitor discharge time is %9.5f  s\n', tdis_cap) 
fprintf('The period of input signal is %9.5f  s\n', tp) 
diary 

 
% 
function y = sinexpf1(t) 
t2 = 1/240; tp = 1/60; 
rc = 10e3*100e-6; 
y = sin(120*pi*(t-tp)) - exp(-(t-t2)/rc); 
end 

 
The results are 
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The value of t2 is   0.00417 s  
The value of t3 is   0.02036 s  
The capacitor discharge time is   0.01619 s  
The period of input signal is   0.01667 s  

 
 
 
 

9.4 FULL-WAVE RECTIFICATION 
 
A full-wave rectifier that uses a center-tapped transformer is shown in Figure 
9.14. 

 

R Vo(t)

Vs(t)

Vs(t)

D1

D2

A

++

+
--

-

 
 
 Figure 9.14  Full-wave Rectifier Circuit with Center-tapped   
   Transformer 
 
When v tS ( )  is positive, the diode D1 conducts but  diode D2 is off, and the 
output voltage v t0 ( )  is given as 
 
 v t v t VS D0 ( ) ( )= −      (9.33) 
 
where 
  

VD  is a voltage drop across a diode. 
 
When  v tS ( )  is negative, diode D1 is cut-off  but  diode D2 conducts.  The 
current flowing through the load R enters it through node A.  The output volt-
age is  
 

 v t v t VS D( ) ( )= −      (9.34) 
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A full-wave rectifier that  does not require a center-tapped transformer is the 
bridge rectifier of  Figure 9.15. 
 

Vo(t)R

A
D4 D1

D3
D2

Vs(t)

 
 
 Figure 9.15  Bridge Rectifier 
 
 
When v tS ( )  is negative, the diodes D2 and D4 conduct, but diodes D1 and 
D3 do not conduct.  The  current entering the load resistance R enters it 
through node A.  The output voltage is 
 

 v t v t VS D( ) ( )= − 2      (9.35) 
 
Figure 9.16 shows the input and output waveforms of a full-wave rectifier cir-
cuit assuming ideal diodes.   
 
The output voltage of a full-wave rectifier circuit can be smoothed by connect-
ing a capacitor across the load.  The resulting circuit is shown in Figure 9.17. 
 
The output voltage and the current waveforms for the  full-wave rectifier with 
RC filter are shown  in Figure 9.18. 
 

 

© 1999 CRC Press LLC 

 

© 1999 CRC Press LLC 



 
 
 Figure 9.16    (a) Input and (b) Output Voltage Waveforms for Full- 
   wave Rectifier Circuit 
 
 
 
 

Vo(t)R

A
D4 D1

D3
D2

Vs(t)

C

 
 
 Figure 9.17  Full-wave Rectifier with Capacitor Smoothing Filter 
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      Figure 9.18    (a) Voltage and (b) Current Waveform of a Full-wave  
   Rectifier with RC Filter 
 
 
From  Figures 9.13 and 9.18,  it can be seen that  the frequency of the ripple 
voltage is twice that of the input voltage.   The capacitor in Figure 9.17 has 
only half the time to discharge.  Therefore,  for a given time constant, CR, the 
ripple voltage will be reduced, and it is given by 
 

 V
V
f CRr peak to peak

m

o
( )− − =

2
    (9.36) 

 
where 
 Vm       is peak value of the input sinusoidal waveform 
 
 f 0         frequency of the input sinusoidal waveform 
 
 
The rms value of the ripple voltage is 
 

 V
V

f CRrms
m

o

=
4 3

     (9.37) 

 
and the output dc voltage is approximately 
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 V V
V

V
V
f CRdc m

r
m

m

o
= − = −

2 4
    (9.38) 

 
 
Example 9.7 
 
For the full-wave rectifier with RC filter shown in Figure 9.17,  if 
v t tS ( ) sin( )= 20 120π  and R = 10KΩ,  C = 100µF,  use MATLAB to find 
the 
(a)  peak-to-peak value of ripple voltage, 
(b)  dc output voltage, 
(c)  discharge time of the capacitor, 
(d)  period of the ripple voltage. 
 
 
Solution 
 
Peak-to-peak ripple voltage and dc output voltage can be calculated using 
Equations (9.36) and (9.37), respectively.  The discharge time of the capacitor 

is the time ( )t t3 1− of  Figure 9.19. 
 

Vm

V2(t)V1(t)

t1 t2 t3 t4
  
 Figure 9.19  Diagram for Calculating Capacitor Discharge Time 
 
 

 v t V
t t
RCm1

1( ) exp
( )

= −
−





    (9.39) 

 

 v t V t tm2 22( ) sin[ ( )]= −π     (9.40) 
 
v t1 ( )  and v t2 ( )  intersect at time t3 . 
 

The period of input waveform, v tS ( ) is  T =
1

240
 s  
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Thus, 

  t
T

1 4
1

240
= =  s,     and    t

T
2 2

1
120

= =  s (9.41) 

 
MATLAB Script 
 

diary ex9_7.dat 
% Full-wave rectifier 
% 
period = 1/60; 
t1 = period/4; 
vripple = 20/(2*60*10e3*100e-6); 
vdc = 20 - vripple/2; 
t3 = fzero('sinexpf2',0.7*period); 
tdis_cap = t3 - t1; 
fprintf('Ripple value (peak-peak) is %9.5f V\n', vripple) 
fprintf('DC output voltage is %9.5f V\n', vdc) 
fprintf('Capacitor discharge time is %9.5f s\n', tdis_cap) 
fprintf('Period of ripple voltage is %9.5f s\n', 0.5*period) 
diary 

 
% 
% 
function y = sinexpf2(t) 
t1 = 1/240; t2 = 2*t1; rc = 10e3*100e-6; 
y = 20(sin(120*pi*(t - t2))) - exp(-(t-t1)/rc); 
end 

 
The results are 
 

Ripple value (peak-peak) is   0.16667 V 
DC output voltage is  19.91667 V 
Capacitor discharge time is   0.00800 s 
Period of ripple voltage is   0.00833 s 
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9.5 ZENER DIODE VOLTAGE REGULATOR CIRCUITS 
 
 
The zener diode is a pn junction diode with controlled reverse-biased break-
down voltage. Figure 9.20 shows the electronic symbol and the current-voltage 
characteristics of the zener diode. 
 

i

v  
 (a) 

 

Vz

Izk

Izm

v

i

slope = 1/rz

 
 
     (b) 
  
 Figure 9.20   Zener Diode (a) Electronic Symbol  (b) I-V  
   Characteristics 
 
 
IZK   is the minimum current needed for the zener to breakdown. I ZM   is the 
maximum current that can flow through the zener without  being destroyed.  It 
is obtained by 
 

 I
P
VZM

Z

Z
=       (9.42) 

 
where PZ  is the zener power dissipation. 
  
The incremental resistance of the zener diode at the operating point is specified 
by 
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 r
V
IZ

Z

Z
=

∆
∆

      (9.43) 

 
One of the applications of a zener diode is its use in the design of voltage  ref-
erence circuits.  A zener diode shunt voltage regulator circuit is shown in Fig-
ure 9.21 

Vs

Rs

Rl
Iz

Il

Vz
Vo

+

-

Is

 
 Figure 9.21  Zener Diode Shunt Voltage Regulator Circuit 
 
The circuit is used to provide an output voltage, V0 , which is nearly constant.  
When the source voltage is greater than the zener breakdown voltage, the zener 
will break down ` and the output voltage will be equal to the zener breakdown 
voltage.   Thus, 
 
 V VZ0 =        (9.44) 
 
From Kirchoff current law, we have 
 
 I I IS Z L= +       (9.45) 
 
and from Ohm’s  Law, we have 
 

 I
V V

RS
S Z

S
=

−
      (9.46) 

and 

 I
V
RL

O

L
=       (9.47) 
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Assuming the load resistance RL is held constant and VS  (which was origi-
nally greater than  VZ )  is increased, the source current  I S   will increase; and 
since I L is constant, the current flowing through the zener will increase.  Con-
versely, if R is constant and VS  decreases, the current flowing through the 
zener will decrease since the breakdown voltage is nearly constant; the output 
voltage will remain almost constant with changes in the source voltage  VS . 
 
Now assuming the source voltage is held constant and the load resistance is 
decreased, then the current I L  will increase and IZ  will decrease.  Con-
versely, if  VS   is held constant and the load resistance increases, the  current 
through the load resistance I L  will decrease and the zener current IZ    will 
increase. 
 
In the design of zener voltage regulator circuits, it is important that the zener 
diode remains in the breakdown region irrespective of the changes in the load 
or the source voltage.  There are two extreme  input/output conditions that  will  
be considered: 
 
(1)  The diode current IZ   is minimum when the load current I L  is  
 maximum and the source voltage VS  is minimum. 
 
(2)   The diode current IZ  is maximum when the load current I L  is  
 minimum and the source voltage VS  is maximum. 
 
 
From condition (1) and Equation (9.46),  we have 
 

 R
V V

I IS
S Z

L Z
=

−
+

,min

,max ,min
     (9.48) 

 
Similarly,  from condition (2),  we get 
 

 R
V V

I IS
S Z

L Z
=

−
+

,max

,min ,max
     (9.49) 

 
Equating Equations (9.48) and (9.49) , we get 
 
( )( ) ( )( ),min ,min ,max ,max ,max ,minV V I I V V I IS Z L Z S Z L Z− + = − +  (9.50) 
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We use the rule of thumb that the maximum zener current is about ten times 
the minimum value, that is 

 I IZ Z,min ,max.= 01      (9.51) 

Substituting Equation (9.49) into Equation (9.51), and solving for IZ ,max ,   we 
obtain 

 I
I V V I V V

V V VZ
L Z S L S Z

S Z S
,max

,min ,min ,max ,max

,min ,max

( ) ( )
. .

=
− + −

− −0 9 01
 (9.52) 

 Knowing  IZ ,max ,  we can use Equation (9.49) to calculate RS . The following 
example uses MATLAB to solve a zener voltage regulator problem. 

 

Example 9.8 

A zener diode voltage regulator circuit of Figure 9.21 has the following data: 

 30  ≤ VS   ≤ 35V;   RL  = 10K,  RS  = 2K 

V IZ = − +20 0 05.           for  -100 mA  ≤ I  < 0  (9.53) 

Use MATLAB  to 

(a)  plot the zener breakdown characteristics, (b) plot the loadline for VS  = 
30V and VS  = 35 V, (c)  determine the output voltage when  VS  = 30V and 
VS  = 35V. 

 

Solution 

Using Thevenin Theorem, Figure 9.21 can be simplified into the form shown 
in Figure 9.22. 
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 Figure 9.22  Equivalent Circuit of Voltage Regulator Circuit 

 

 V
V R

R RT
S L

L S
=

+
      (9.54) 

and     

 R R RT L S=       (9.55)
    

Since   RL   = 10K,  RS   =  2K, RT  =  (10)(2K) / 12 K = 1.67 KΩ 

 when VS  = 30V,  VT  = (30)(10) / 12  = 25 V 

 when VS  = 35V,  VT  = (35)(10) / 12  =  29.17 V 

The loadline equation is 

 V R I VT T Z= +       (9.56) 

Equations (9.53) and (9.56) are two linear equations solving for I,  so we get 

 V V R I IZ T T= − = − +20 0 05.    

⇒    I
V
R

T

T
=

+
+

( )
.
20
0 05

      (9.57) 
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From Equations (9.56) and (9.57), the output voltage (which is also zener volt-
age)  is 

 V V R I V
R V

RZ T T T
T T

T
= − = −

+
+

( )
.
20

0 05
   (9.58)

   
MATLAB program 
 

diary ex9_8.dat 
% Zener diode voltage regulator 
vs1 = -30; vs2 = -35; rl =10e3; rs = 2e3; 
i = -50e-3: 5e-3 :0; 
vz = -20 + 0.05*i; 
m = length(i); 
i(m+1) = 0; vz(m+1) = -10; 
i(m+2) = 0; vz(m+2) = 0; 
% loadlines 
vt1 = vs1*rl/(rl+rs); 
vt2 = vs2*rl/(rl+rs); 
rt = rl*rs/(rl+rs); 
l1 = vt1/20; 
l2 = vt2/20; 
v1 = vt1:abs(l1):0; 
i1 = (vt1 - v1)/rt; 
v2 = vt2:abs(l2):0; 
i2 = (vt2 - v2)/rt; 
% plots of Zener characteristics, loadlines  
plot(vz,i,'w',v1,i1,'w',v2,i2,'w') 
axis([-30,0,-0.03,0.005]) 
title('Zener Voltage Regulator Circuit') 
xlabel('Voltage (V)') 
ylabel('Current (A)') 
text(-19.5,-0.025,'Zener Diode Curve') 
text(-18.6,-0.016, 'Loadline (35 V Source)') 
text(-14.7,-0.005,'Loadline (30 V Source)') 
% output voltage when vs = -30v 
ip1 = (vt1 + 20)/(rt + 0.05) 
vp1 = vt1 - rt*(vt1+20)/(rt + 0.05) 
% output voltage when vs = -35v 
ip2 = (vt2 + 20)/(rt + 0.05) 
vp2 = vt2 - rt*(vt2+20)/(rt + 0.05) 
diary 

 
The results obtained are 
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ip1 = 
         -0.0030 
 
vp1 = 
          -20.0001 
 
ip2 = 
         -0.0055 
 
vp2 = 
         -20.0003 

 
When the source voltage is 30 V, the output voltage is 20.0001 V. 
In addition, when the source voltage is 35 V, the output voltage is 20.0003 V. 
 
 
The zener breakdown characteristics and the loadlines are shown in Figure 
9.23. 
 

 
 
 Figure 9.23  Zener Characteristics and Loadlines 
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EXERCISES 
 

9.1 Use the iteration technique to find the voltage VD  and the I D     of    
Figure P9.1.  Assume that T = 25 oC, n  = 1.5, I S  = 10-16 A.  Stop current the 

iteration when    V Vn n− <−
−

1
910   V. 
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10 V

4 kilohms 5.6 kilohms

ID
VD6 kilohms

 

Figure P9.1  A Diode Circuit 

9.2 A zener diode has the following  I-V characteristics 

 

Reverse Voltage (V) Reverse Current (A) 

-2 -1.0e-10 

-4 -1.0e-10 

-6 -1.0e-8 

-8 -1.0e-5 

-8.5 -2.0e-5 

-8.7 -15.0e-3 

-8.9 -43.5 e-3 

(a) Plot the reverse characteristics of the diode.  (b) What is the 
breakdown voltage of the diode?  (c ) Determine the dynamic resis-
tance of the diode in its breakdown region.  

9.3 A forward-biased diode has the following corresponding voltage and  
 current.   
 (a) Plot the static I-V characteristics. 

(b) Determine the diode parameters I S   and n.  
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(c)  Calculate the dynamic resistance of the diode at VS  = 0.5 V. 

 

Forward Voltage, V Forward Current, A 

0.2 7.54e-7 

0.3 6.55e-6 

0.4 5.69e-5 

0.5 4.94e-4 

0.6 4.29e-3 

0.7 3.73e-2 

. 

9.4  For Figure P9.4,   

Id

20 V

10 k

10 k 10 k

5 k

15 k

Ω

Ω

Ω

Ω Ω

 

Figure P9.4  Diode Circuit 

(a)  Use iteration to find the current through the diode.  The iteration  

can be stopped when I Idn dn− <−
−

1
1210    A.      

(b)  How many iterations were performed  before the required result 
was  obtained?   Assume  a temperature of 25 oC, emission coef-
ficient, n , of 1.5, and the reverse saturation current, I S , is  10-16 
A. 
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9.5  For a full-wave rectifier circuit with smoothing capacitor shown in      Fig-
ure 9.17,  if v t tS ( ) sin( )= 100 120π V, R  = 50KΩ, C = 250µF,    using  
MATLAB  

(a)  Plot the input and output voltages when the capacitor is discon- 
nected from the load resistance R.    

(b)  When the capacitor is connected  across load resistance R, de-
termine the conduction time of the diode.  

 (c)  What is  the diode conduction time?  

 

9.6  For the  voltage regulator circuit shown in Figure 9.21, assume that   50   < 
VS   < 60 V, RL   = 50K,  RS  = 5K, VS  =  -40 + 0.01 I.  Use MATLAB 
to  

 (a)  Plot the zener diode breakdown characteristics.  

(b)  Plot the loadline for VS  = 50 V and VS  = 60V.  

(c)  Determine the output voltage and the current flowing through the 
source resistance RS  when  VS  = 50V and  VS  = 60V. 

  

9.7   For the zener voltage regulator shown in Figure 9.21,  If  VS  = 35V, RS    
= 1KΩ,  V IZ = − +25 0 02.  and  5K < RL  < 50K,  use MATLAB   to 

 (a)  Plot the zener breakdown characteristics  

(b)  Plot the loadline when RL  = 5K and RL  = 50K.    

(c)  Determine the output voltage when RL = 5KΩ and RL =   50KΩ.  

(d)  What is the power dissipation of the diode when RL  = 50KΩ? 
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 CHAPTER TEN 
 

SEMICONDUCTOR PHYSICS 
 
 
In this chapter,  a brief description of the basic concepts governing the flow of 
current in a pn junction are discussed.  Both intrinsic and extrinsic semicon-
ductors are discussed.   The characteristics of depletion and diffusion capaci-
tance are explored through the use of example problems solved  with  
MATLAB.  The effect of doping concentration on the breakdown voltage of 
pn junctions is examined.    
 
 

10.1 INTRINSIC SEMICONDUCTORS 
 
 
10.1.1 Energy  bands 
 
According to the planetary  model of an isolated atom, the nucleus that con-
tains protons and neutrons constitutes most of the mass of the atom.  Electrons 
surround the nucleus in specific orbits.  The electrons are negatively charged 
and the nucleus is positively charged.  If an electron absorbs energy  (in the 
form of a photon), it moves to orbits further from the nucleus.  An electron 
transition from a higher energy orbit to a lower energy orbit emits a photon for 
a direct band gap semiconductor. 
 
The energy levels of the outer electrons form energy bands.  In insulators, the 
lower energy band (valence band) is completely filled and the next energy 
band (conduction band) is completely empty.  The valence and conduction 
bands are separated by a forbidden energy gap.   
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 Figure 10.1  Energy Level Diagram of (a) Silicon, (b) Germanium,
   and  (c ) Insulator (Carbon) 
 
 
 

 

© 1999 CRC Press LLC 

 

© 1999 CRC Press LLC 



In conductors, the valence band partially overlaps the conduction band with no 
forbidden energy gap between the valence and conduction bands.   In semicon-
ductors the forbidden gap is less than 1.5eV.  Some semiconductor materials 
are silicon (Si), germanium (Ge), and gallium arsenide (GaAs).  Figure 10.1 
shows the energy level diagram of silicon, germanium and insulator (carbon). 

 
  
10.1.2 Mobile carriers 
 
Silicon is the most commonly used semiconductor material in the integrated 
circuit industry.  Silicon has four valence electrons and its atoms are bound to-
gether by covalent bonds.  At absolute zero temperature the valence band is 
completely filled with electrons and no current flow can take place.  As  the 
temperature of a silicon crystal is raised, there is increased probability of 
breaking covalent bonds and freeing electrons.  The vacancies left by the freed 
electrons are holes.  The process of creating free electron-hole pairs is called 
ionization.  The free electrons move in the conduction band.  The average 
number of carriers (mobile electrons or holes) that exist in an intrinsic semi-
conductor material may be found from the mass-action law: 
 
 n AT ei

E kTg= −1 5. [ /( )]      (10.1) 
 
where 
  
 T is the absolute temperature in oK 
 

k  is Boltzmann’s constant   ( k   = 1.38 x 10-23 J/K or 8.62x10-5  
     eV/K ) 
 

E g   is  the width of the forbidden gap in eV.   E g   is 1.21 and  
          1.1eV for Si at 0oK and 300oK, respectively.  It is given as 
 
  E E Eg c v= −      (10.2) 
 
 A is a constant dependent on a given material and it is given as 
 

A
h

m k
m
m

m
m

n p

o
=

2
23 0

3 2

0

3 4( ) ( )/
* *

/π   (10.3)

    
where 
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h is Planck’s constant  (h = 6.62 x 10-34 J s   or 4.14 x 10-15 eV s). 
 
 mo is the rest mass of an electron 
 
 mn*  is the effective mass of an electron in  a material 
 
 mp*  is effective mass of a hole in a material 
 
 
The mobile carrier concentrations are dependent on the width of the energy 
gap, Eg ,  measured with respect to the thermal energy kT.    For small values 

of  T ( kT << E g  ),  ni  is  small implying, there are less  mobile carriers.   
For silicon, the equilibrium intrinsic concentration at room temperature is 
 
 ni   = 1.52 x 1010  electrons/cm3    (10.4) 
 
Of the two carriers that we find in semiconductors, the electrons have a higher 
mobility than  holes.   For example, intrinsic silicon at  300oK  has  electron 
mobility  of 1350 cm2 / volt-sec and hole mobility of  480 cm2 / volt-sec.   The 
conductivity of an intrinsic semiconductor is given by 
 
 σ µ µi i n i pq n p= +( )      (10.5) 
 
where 
   
 q is the electronic charge (1.6 x 10-19 C) 
 ni   is the electron concentration 
 pi  is the hole concentration. pi = ni  for the intrinsic  

semiconductor 
µn  electron mobility in the semiconductor material 

 µp  hole mobility in the semiconductor material. 
 
Since electron mobility is about three times that of hole mobility in silicon, the 
electron current is considerably more than the hole current.   The following ex-
ample illustrates the dependence of electron concentration on temperature. 
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Example 10.1 
 
Given that at T = 300 oK, the electron concentration in silicon  is 1.52 x 1010 

electrons /cm3  and E g  = 1.1 eV at  300 oK.  

(a)    Find the constant A  of  Equation (10.1).    
(b)    Use MATLAB to plot the electron concentration versus temperature. 
 
 
Solution 
 
From Equation (10.1), we have 
 

 152 10 30010 1 5 1 1 300 8 62 10 5

. ( ) . [ . / * . * )]x A e= − −

 
 
We use MATLAB to solve for A.    The width of energy gap with temperature 
is given as [1]. 
 

 E T x
T

Tg ( ) . .= −
+







−117 4 37 10

636
4

2

    (10.6) 

 
Using Equations (10.1) and (10.6), we can calculate the electron concentration 
at various temperatures. 
 
 
MATLAB Script 
 

% 
% Calculation of the constant A 
diary ex10_1.dat 
k = 8.62e-5;  
na = 1.52e10;   ta = 300; 
ega = 1.1; 
ka  = -ega/(k*ta); 
t32a = ta.^1.5; 
A = na/(t32a*exp(ka)); 
fprintf('constant A is %10.5e \n', A) 

 
% Electron Concentration vs. temperature 
 
for i = 1:10 
   t(i) = 273 + 10*(i-1); 
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   eg(i) = 1.17 - 4.37e-4*(t(i)*t(i))/(t(i) + 636); 
   t32(i) = t(i).^1.5; 
   ni(i) = A*t32(i)*exp(-eg(i)/(k*t(i))); 
end 
semilogy(t,ni) 
title('Electron Concentration vs. Temperature') 
xlabel('Temperature, K') 
ylabel('Electron Concentration, cm-3') 

 
 
Result for part (a) 
 

constant A is 8.70225e+024  
 
Figure 10.2 shows the plot of the electron concentration versus temperature. 
 
 

 
 
 Figure 10.2  Electron Concentration versus Temperature 
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10.2 EXTRINSIC SEMICONDUCTOR 
 
 
10.2.1  Electron and hole concentrations 
 
Extrinsic semiconductors are formed by adding specific amounts of impurity 
atoms to the silicon crystal.  An n-type semiconductor is formed by doping the 
silicon crystal with elements of group V of the periodic table (antimony, arse-
nic, and phosphorus).  The impurity atom is called a donor.  The majority car-
riers are electrons and the minority carriers are holes.  A p-type semiconductor 
is formed by doping the silicon crystal with elements of group III of the peri-
odic table (aluminum, boron, gallium, and indium).  The impurity atoms are 
called acceptor  atoms.  The majority carriers are holes and minority carriers 
are electrons. 
 
In a semiconductor material (intrinsic or extrinsic), the law of mass action 
states that 
 
 pn   = constant      (10.7) 
 
where 
  
 p    is the hole concentration 
 n  is the electron concentration. 
 
 
For intrinsic semiconductors, 
 
 p n ni= =       (10.8) 
 
and Equation (10.5) becomes 
 
 pn ni= 2       (10.9) 
 
and    ni   is given by Equation (10.1). 
 
 
The law of mass action enables us to calculate the majority and minority car-
rier density in an extrinsic semiconductor material.  The charge  neutrality 
condition of a semiconductor implies that 
 
 p N n ND A+ = +                     (10.10) 
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where 
 N D       is the donor concentration 

N A       is the acceptor concentration 
p       is the hole concentration 

 n        is the electron concentration. 
 
 
In  an n-type semiconductor, the donor concentration is greater than the intrin-
sic electron  concentration, i.e., N D  is typically 1017 cm-3  and   ni  = 1.5 x 
1010   cm-3  in Si at room temperature.  Thus,  the majority and minority concen-
trations are given by 
 
 n Nn D≅                   (10.11) 

 p
n
N

i

D
≅

2

                    (10.12) 

 
In a p-type semiconductor, the acceptor concentration  N A    is greater than the 
intrinsic hole concentration   p ni i= .  Thus, the majority and minority con-
centrations are given by 
 
 p Np A≅                  (10.13) 
 

 n
n
N

i

A
≅

2

                    (10.14) 

 
The following example gives the minority carrier as a function of doping con-
centration. 
 
 
Example 10.2 
 
For an n-type semiconductor at 300oK, if the doping concentration is varied 
from 1013  to 1018  atoms/cm3, determine the  minority carriers in the doped 
semiconductors. 
 
Solution 
 
From Equation (10.11) and (10.12),  
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Electron concentration =  N D   and  

Hole concentration = 
n
N

i

D

2

  

where 
 ni  = 1.5 2 x 1010    electrons/cm3 

 

The MATLAB program is as follows: 
 

% hole concentration in a n-type semiconductor 
nd = logspace(13,18); 
n = nd; 
ni = 1.52e10; 
ni_sq = ni*ni; 
p = ni_sq./nd; 
semilogx(nd,p,'b') 
title('Hole concentration') 
xlabel('Doping concentration, cm-3') 
ylabel('Hole concentration, cm-3') 

 
Figure 10.3 shows the hole concentration versus doping. 
 

 
 
 Figure 10.3   Hole Concentration in N-type Semiconductor (Si) 
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10.2.2 Fermi level 
 
The Fermi level, EF , is a chemical energy of a material.  It is used to describe 
the energy level of the electronic state at which an electron has the probability 
of 0.5 occupying that state.  It is given as 
 

 E E E KT
m
mF C V

n

p
= + −

1
2

4
3

( ) ln( )
*

*                (10.15) 

where 
 
 EC   =  energy in the conduction band 
 EV   =  energy in the valence band 
 and  k, T, mn*  and  mp*  were defined in Section  10.1. 
 
 
In an intrinsic  semiconductor  (Si and Ge)  mn* and mp*  are of the same order 
of magnitude and typically, EF  >> k T .    Equation (10.15) simplifies to 
 

 E E E EF i C V= ≅ +
1
2

( )                (10.16) 

 
Equation (10.16) shows that the Fermi energy occurs near the center of the en-
ergy gap in an intrinsic semiconductor.  In addition, the Fermi energy can be 
thought of as the average energy of mobile carriers in a semiconductor mate-
rial. 
 
In an  n-type semiconductor, there is a shift of the Fermi level towards the edge 
of the conduction band.  The upward shift is dependent on how much the 
doped electron density has exceeded the intrinsic value.  The relevant equation 
is 
 

 [ ]n n ei
E E kTF i= −( ) /                  (10.17) 

 
where 
 
 n    is the total electron carrier density 
 ni   is the intrinsic electron carrier density 
 EF  is the doped Fermi level 
 Ei   is the intrinsic Fermi level. 
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In the case of a p-type semiconductor, there is a downward shift in the Fermi 
level.  The total hole density will be  given by 
 

 [ ]p n ei
E E kTi F= −( ) /                 (10.18) 

 
Figure 10.4 shows the energy band diagram of intrinsic and extrinsic semicon-
ductors.  
 

EC

EI = EF

EV

   EC

   EF

   EI

   EV

EC

   EF

   EI

   EV  
 
 (a)   (b)   (c ) 
 
 Figure 10.4  Energy-band Diagram of  (a) Intrinsic,  (b) N-type, and  
   (c )  P-type Semiconductors. 
 
 
10.2.3 Current density and mobility 
 
Two mechanisms account for the movement of carriers in a semiconductor ma-
terial: drift and  diffusion.  Drift current is caused by the application of an elec-
tric field, whereas diffusion current is obtained when there is a net flow of car-
riers from a region of high concentration to a region of low concentration.  The 
total drift current density in an extrinsic semiconductor material is 
 
 J q n pn p= +( )µ µ Ε                 (10.19) 
 
where 
 J   is current density 
 n   is mobile electron density 
 p   is hole density, 
 µn   is mobility of an electron 
 µp   is mobility of a hole 
 q   is the electron charge 
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Ε   is the electric field. 
 
 
The total conductivity is 
 
 σ µ µ= +q n pn p( )Ε                 (10.20) 
 
Assuming that there is a diffusion of holes from an area of high concentration 
to  that of  low  concentration, then  the current  density of  holes  in  the  x- 
direction is 

 J qD
dp
dxp p= −  A/cm2               (10.21) 

where 
   
 q    is the electronic charge 
 Dp   is the hole diffusion constant 
 p   is the hole concentration. 
 
 
Equation (10.21) also assumes  that, although  the hole concentration varies 
along the x-direction,  it is constant in the y and z-directions.  Similarly, the 
electron current density, Jn ,  for diffusion of electrons is  

 J qD
dn
dxn n=  A / cm2                (10.22) 

 
where 
 Dn   is the electron diffusion constant 
 n   is the electron concentration. 
 
 
For silicon, Dp   = 13 cm2/s , and  Dn   =  200 cm2/s .  The diffusion and mo-
bility constants are related, under steady-state conditions, by the Einstein rela-
tion 
 

 
D D kT

q
n

n

p

pµ µ
= =                 (10.23) 

 
The following two examples show the effects  of doping concentration on mo-
bility and resistivity. 
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Example 10.3 
 
From measured data, an empirical relationship between electron (µn ) and hole 
( µp ) mobilities versus doping concentration at 300oK is given as [2] 
 

 µn D
D

D

N
x N

x N
( )

.
.

.

.=
+
+

51 10 92
375 10

18 0 91

15 0 91               (10.24) 

   
  

 µpn A
A

A

N
x N

x N
( )

. .
.

.

.=
+
+

2 9 10 47 7
586 10

15 0 76

12 0 76                    (10.25) 

  
where 
   
 N D   and N A   are donor and acceptor concentration per cm3,  
  respectively. 
 
Plot the µn ( N D  ) and µp ( N A  ) for  the doping concentrations from 1014 to 
1020  cm-3 . 
 
 
Solution 
 
MATLAB Script 
 

% nc - is doping concentration 
% 
nc = logspace(14,20); 
un = (5.1e18 + 92*nc.^0.91)./(3.75e15 + nc.^0.91); 
up = (2.90e15 + 47.7*nc.^0.76)./(5.86e12 + nc.^0.76); 
semilogx(nc,un,'w',nc,up,'w') 
text(8.0e16,1000,'Electron Mobility') 
text(5.0e14,560,'Hole Mobility') 
title('Mobility versus Doping') 
xlabel('Doping Concentration in cm-3') 
ylabel('Bulk Mobility (cm2/v.s)') 

 
Figure 10.5 shows the plot of mobility versus doping concentration. 
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 Figure 10.5  Mobility versus Doping Concentration 
 
 
 
Example 10.4 
 
At the temperature of 300oK, the resistivity of silicon doped by phosphorus is 
given as [ 3] 
 

 ρn
D

D D

x N
x N x N

=
+
+− −

375 10
147 10 815 10

15 0 91

17 1 91 1

.
. .

.

.                (10.26) 

 
A similar relation for silicon doped with boron is given as [ 4] 
 

 ρp
A

A A

x N
x N N

=
+
+− −

586 10
7 63 10 4 64 10

12 0 76

18 1 76 4

.
. . *

.

.              (10.27) 

 
where  
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N D  and N A  are donor and acceptor concentrations, respectively.   
 
Use MATLAB to plot the resistivity versus doping concentration (cm-3 ). 
 
 
 
Solution 
 
MATLAB Script 
 

% nc is doping concentration 
% rn - resistivity of n-type 
% rp - resistivity of p-type 
 
nc = logspace(14,20); 
rn = (3.75e15 + nc.^0.91)./(1.47e-17*nc.^1.91 + 8.15e-1*nc); 
rp = (5.86e12 + nc.^0.76)./(7.63e-18*nc.^1.76 + 4.64e-4*nc); 
 
semilogx(nc,rn,'w',nc,rp,'w') 
axis([1.0e14, 1.0e17,0,140]) 
title('Resistivity versus Doping') 
ylabel('Resistivity (ohm-cm)') 
xlabel('Doping Concentration cm-3') 
text(1.1e14,12,'N-type') 
text(3.0e14,50,'P-type') 

 
Figure 10.6 shows the resistivity of N- and P-type silicon. 
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 Figure 10.6  Resistivity versus Doping Concentration 
 
 
 
 
 

10.3  PN JUNCTION:  CONTACT POTENTIAL, JUNCTION  
 CURRENT 

 
 
10.3.1 Contact potential 
 
An ideal pn junction is obtained when a uniformly doped p-type material 
abruptly changes to n-type material.  This is shown in Figure 10.7. 
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P+ N

NA

ND

X

x = 0

(a)

(b)  
 
 Figure 10.7  Ideal pn Junction  (a) Structure,  (b) Concentration of  
   Donors ( N D ), and acceptor ( N A ) impurities. 
 
 
Practical pn junctions are formed by diffusing into an n-type semiconductor a 
p-type impurity atom, or vice versa.  Because the p-type semiconductor has 
many free holes and the n-type semiconductor has many free electrons, there is 
a strong tendency for the holes to diffuse from the p-type to the n-type semi-
conductors.  Similarly, electrons diffuse from the n-type to the p-type material.  
When holes cross the junction into the n-type material, they recombine with the 
free electrons in the n-type.  Similarly,  when electrons  cross the junction into 
the p-type region, they recombine with free holes.  In the junction a transition 
region or depletion region is created. 
 
In the depletion region, the free holes and electrons are many magnitudes 
lower than holes in p-type material and electrons in the n-type material.  As 
electrons and holes recombine in the transition region, the region near the junc-
tion within the n-type semiconductor is left with a net positive charge.  The re-
gion near the junction within the p-type material will be left with a net negative 
charge.  This is illustrated in Figure 10.8. 
 
Because of the positive and negative fixed ions at the transition region, an elec-
tric field is established across the junction.  The electric field creates a poten-
tial difference across the junction, the potential barrier.  The latter is also  
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called diffusion potential or contact potential, VC .  The potential barrier pre-
vents the flow of majority carriers across the junction under equilibrium condi-
tions. 

Ecp

Eip

Evp

Ec

EfEin

Ev

P N

Depletion Region

+
+
+

-
-
-

+
+
+

-
-
-

NA = ND

 
 
Figure 10.8  pn Junction  (a) Depletion region with Positive and  

Negative Ions  (b)  Energy Band Diagram near a pn 
Junction. 

 
 

The contact potential, VC , may be obtained from the relations 
 

 
n
n

e
p
p

n

p

qV
kT p

n

C

= =




                 (10.28) 

or 

 V
kT
q

n
n

kT
q

p
pC

n

p

p

n
= =ln( ) ln( )                (10.29) 

  

But, noting that    p Np A≅ ,    n
n
Np

i

A
≅

2

,  n Nn D≅  , p
n
Nn

i

D
≅

2

,  

Equation (10.29) becomes  
 

V
kT
q

N N
nC
A D

i
= ln( )2                 (10.30) 
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The contact potential can also be obtained from the band-bending diagram of 
the pn junction shown in Figure 10.8.  That is, from Figure 10.8 
 

 V
E E

qC
in ip=
−

                (10.31) 

or 

 VC fn fp= − +( )φ φ                 (10.32) 

 
where  

φFN  and φFP  are the electron and hole  Fermi potentials,  
  respectively.  They are given as 
 

  φFN
F IN D

i

E E
q

kT
q

N
n

=
−

=






ln              (10.33) 

 and 

  φFP
F IP A

i

E E
q

kT
q

N
n

=
−

=






ln             (10.34) 

 
Using Equations (10.31) to (10.34), we have 
 

  V
kT
q

N N
nC
A D

i
=







ln 2                (10.35) 

 
It should be noted that Equations (10.30) and (10.35) are identical.   Typically, 
VC  is from 0.5 to 0.8 V for the silicon pn junction. For germanium, VC  is ap-
proximately 0.1 to 0.2, and that for gallium arsenide  is 1.5V. 
 
When a positive voltage VS  is applied to the  p-side of the junction and n-side 
is grounded, holes are pushed from the p-type material into the transition re-
gion.  In addition, electrons are attracted to transition region. The  depletion  
region decreases, and the effective contact potential is reduced.  This allows 
majority carriers to flow  through  the depletion region.  Equation (10.28) 
modifies to 
 

 
n
n

e
p
p

n

p

q V V
kT p

n

G S

= =
−





( )

                (10.36) 
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When a negative voltage VS  is applied to the p-side of a junction and the n-
side is grounded, the applied voltage adds directly to the contact potential.  
The depletion region increases and it become more difficult for the majority 
carriers to flow across the junction.  The current flow is mainly due to the flow 
of minority carriers.  Equation (10.28) modifies to 
 

 
n
n

e
p
p

n

p

q V V
kT p

n

C S

= =
+





( )

                (10.37) 

 
Figure 10.9 shows the potential across the diode when a pn junction is  
forward-biased and reversed-biased. 
 

P N

Vc
VS = 0

VC - VS VS > 0

VS < 0
VC + VS

VS

 
  

Figure 10.9   PN Junction (a) with Depletion Layer and Source  Con-
nection  (b) Contact Potential with No Source Voltage (VS   = 0)  (c ) 
Junction Potential for Forward-biased pn Junction (VS  > 0) and  (d) 
Junction Potential for Reversed-biased pn Junction  (VS  < 0) 
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The following example illustrates the effect of source voltage on the junction 
potential. 
 
 
 
Example 10.5 
 
For a Silicon pn junction with N D   = 1014  cm-3  and N A   =  1017  cm-3  and 

with ni
2  =  1.04 x 1026  cm-6  at  T =  300 oK,   

 
(a)   Calculate the contact potential.   
 
(b)  Plot the junction potential when the source voltage VS  of Figure  
 10.9 increases from  -1.0 to 0.7 V. 
 
Solution 
 
MATLAB Script 
 

diary ex10_5.dat 
% Junction potential versus source voltage 
% using equation(10.36) contact potential is 
 
t = 300;  
na = 1.0e17;  
nd = 1.0e14;  
nisq = 1.04e20; 
q = 1.602e-19;  
k = 1.38e-23; 
 
% calculate contact potential 
vc = (k*t/q)*(log(na*nd/nisq)) 
vs = -1.0:0.1:0.7; 
jct_pot = vc - vs; 
 
% plot curve 
plot(vs,jct_pot) 
title('Junction potential vs. source voltage') 
xlabel('Source voltage, V') 
ylabel('Junction potential, V') 
diary 
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(a)  The contact potential is 
 

vc = 
       0.6535 

 
(b) Figure 10.10 shows the graph of the junction potential versus the source 
voltage. 
 
 

 
 
 Figure 10.10  Junction Potential versus  Source Voltage. 
 
 
 
10.3.2 Junction current 
 
 
The pn junction current is given as 
 

 I I es

qV
kT

S

= −
















 1                  (10.38) 

where 
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 VS  is the voltage across the pn junction  [see Figure 10.9 (a)] 
 q  is the electronic charge 
 T  is the absolute temperature 
 k  is Boltzmann’s constant 
 I S  is reverse saturation current.  It is given as 
 

  I qA
D p

L
D n

LS
p n

p

n p

n
= +( )                (10.39) 

where 
 
 A    is the diode cross-sectional area 
    Lp , Ln   are the hole and electron diffusion lengths 

  p nn p,    are the equilibrium minority carrier concentrations 

  D Dp n,   are the hole and electron diffusion coefficients,  
    respectively. 
 

Since   p
n
Nn

i

D
≅

2

 and  n
n
Np

i

A
≅

2

, Equation  (10.39)  becomes 

  

I qA
D

L N
D

L N
nS

p

p D

n

n A
i= +











2                 (10.40) 

  
The diffusion coefficient and diffusion length are related by the expression 
 
  L Dp p p= τ                         (10.41) 

 
and 

  L Dn n n= τ                   (10.42) 
 
where 
    
  τ τp n,   are the hole minority and electron minority carrier lifetime,  
     respectively. 
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Equation (10.38) is the diode equation.  It is applicable for forward-biased 
(VS  > 0 ) and reversed-biased (VS   < 0 ) pn junctions. 
   
 
Using Equations (10.1) and (10.39), the reverse saturation current can  
be rewritten as 
 

  [ ]I k T eS
E kTg= −

1
3 /( )

                (10.43) 
    
where k1  is a proportionality constant 
 

  
dI
dT

k T e k T
E

kT
eS

E
kT g

E
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g g

= +
−− −

3 1
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1
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2   

 
Thus 
 

  
1 3 1 3 1
I

dI
dT T T

E
kT T T

V
VS

S g g

T
= + = +                (10.44) 

  
where 
 

 V
kT
qT =         and V

E
qg

g=  

 
For silicon at room temperature,  
 

  
V
V

g

T
= 44 4. .   

Thus 

 
dI
dT

V
V

dT
T

dT
T

S g

T
= + =( ) .3 47 4                 (10.45) 

 
At room temperature (300o K),  the saturation current approximately doubles 
every 5o C [5].    The following example shows how I S  is affected by tem-
perature. 
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Example 10.6 
 
A silicon diode has I S   =  10-15 A at 25o C and assuming I S  increases by 
15%  per  oC rise in temperature, find and plot the value of I S  from 25 oC to  
125 oC. 
 
Solution 
 
From the information given  above, the reverse saturation current can be ex-
pressed as 
 

 ( )( )I S
T= − −10 11515 25.  

 
MATLAB is used to find  I S  at various temperatures. 
 
 
MATLAB Script 
 

% Saturation current 
% 
 
t = 25:5:125; 
is = 1.0e-15*(1.15).^(t-25); 
 
plot(t,is) 
title('Reverse Saturation Current vs. Temperature') 
xlabel('Temperature, C') 
ylabel('Current, A') 

 
 
Figure 10.11 shows the effect of temperature on  the reverse saturation current. 
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 Figure 10.11  Reverse Saturation Current versus Temperature 
 
 
 
 
10.4 DEPLETION AND DIFFUSION CAPACITANCES 
 
 
10.4.1 Depletion capacitance 
 
As mentioned previously, a pn junction is formed when a p-type material is 
joined to an n-type region.  During device fabrication, a p-n junction can be 
formed using process such as ion-implantation diffusion or epitaxy.  The dop-
ing profile at the junction can take several shapes.   Two popular doping pro-
files are abrupt (step) junction and linearly graded junction. 
 
In the abrupt junction, the doping of the depletion region on either side of the 
metallurgical junction is a constant.  This gives rise to constant charge densi-
ties on either side of  the junction.  This is shown in Figure 10.12. 
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Figure 10.12        PN  Junction with Abrupt Junction  (a) Depletion  
Region   (b) Charge Density   (c ) Electric Field and  
(d) Potential Distribution 

 
 
 
For charge equality, 
 
 qN W qN WA P D N=                              (10.46) 
 
it can be shown [6] that the depletion width in the p-type (WP ) and that of the 
n-type material (WN ) can be given as 
 

 W
N V V

qN N NP
D C s

A D A
=

−
+

2ε ( )
( )

                (10.47) 
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 W
N V V

qN N NN
A C s

D D A
=

−
+

2ε ( )
( )

                (10.48) 

 
where 
 
 ε    is the relative dielectric constant 
       (ε ε= 12 0   for Si,  and  ε0   =  8.85 x 10-12 F/m) 
 N D    is donor concentration 

N A    is acceptor concentration 
 q    is electronic charge 
 VC    is contact potential obtained from Equation (10.30) 
 VS    is source voltage. 
 
 
If the doping density on one side of the metallurgical junction is greater than 
that on the other side (i.e., N A  >> N D   or N D  >> N A  ) , then the junction 
properties are controlled entirely by the lightly doped side.  This condition is 
termed  the one-sided step junction approximation.  This is the practical model 
for shallow junctions formed by a heavily doped diffusion into a lightly doped 
region of opposite polarity [7]. 
 
In a linearly graded junction, the ionized doping charge density varies linearly 
across the depletion region.  The charge density passes through zero at the 
metallurgical junction.  Figure 10.13 shows the profile of the linearly graded 
junction. 
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Figure 10.13        PN Junction with Linearly Graded Junction  

(a)  Depletion Region   (b) Charge Density    
(c ) Electric Field   (d) Potential Distribution 

 
 
For a linearly graded junction, the depletion width in the p-type and n-type ma-
terial, on either side of the metallurgical junction, can be shown to be 
 

 W W
V V
qaN P
C S= =
−







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12
1
3

ε( )
               (10.49) 

 
where 
 
 a  is the slope of the graded junction impurity profile. 
 
The contact potential is given as [6] 
 

 V
kT
q

aW
nC

N

i
= ln( )

2
                 (10.50) 

  
The depletion capacitance, C j , is due to the charge stored in the depletion re-
gion.  It is  generally given as 
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 C
A

Wj
T

=
ε

                  (10.51) 

where  
 

 W W WT N P= +                      (10.52) 
 

A    is cross-sectional area of the pn junction. 
 
 
 
For abrupt junction, the depletion capacitance is given as 
 

 C A
qN N

N N V Vj
A D

D A C S
=

+ −
ε

2( )( )
               (10.53)

   
 
For linearly graded junction, the depletion capacitance is given as 
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In general, we may express the depletion capacitance of a pn junction by 
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where 

 m =
1
3

   for linearly graded junction and 

 m =
1
2

 for step junction 
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 C j0  =  zero-biased junction capacitance.  It can be obtained from  

  Equations (10.53) and (10.54) by setting VS   equal to zero. 
 
 
Equations (10.53 to 10.55) are, strictly speaking, valid under the conditions of 
reversed-biased VS  < 0.  The equations  can, however, be used when VS  < 
0.2V.  The positive voltage, VC  , is the contact potential of the pn junction.  
As the pn junction becomes more reversed biased (VS  < 0),  the depletion ca-
pacitance decreases.  However, when the pn junction becomes slightly forward 
biased, the capacitance increases rapidly.  This is illustrated by the following 
example. 
 
 
 
Example 10.7 
 
For a certain pn junction, with contact potential 0.065V, the junction capaci-
tance is 4.5 pF for VS   =  -10 and  C j   is 6.5 pF for VS   = -2 V.   

(a) Find  m and C j0  of Equation (10.55).   
(b) Use MATLAB to plot the depletion capacitance from -30V to 0.4V. 
 
 
Solution 
  
From Equation (10.55)  
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and 

 C C
V
Vj j
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C

m

0 1
11= −
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




                  (10.57) 

 
MATLAB is used to find m and C j0 .  It is also used to plot the depletion ca-
pacitance. 
 
 
MATLAB Script 
 

% depletion capacitance 
% 
cj1 = 4.5e-12; vs1 = -10; 
cj2 = 6.5e-12; vs2 = -2; 
vc = 0.65; 
 
num = cj1/cj2; 
den = (vc-vs2)/(vc-vs1); 
m = log10(num)/log10(den); 
cj0 = cj1*(1 - (vs1/vc))^m; 
vs = -30:0.2:0.4; 
k = length(vs); 
for i = 1:k 
 cj(i) = cj0/(1-(vs(i)/vc))^m; 
end 
plot(vs,cj,'w') 
xlabel('Voltage,V') 
ylabel('Capacitance,F') 
title('Depletion Capacitance vs. Voltage') 
axis([-30,2,1e-12,14e-12]) 

 
 
(a)  The values of  m C j, 0  are 

m  = 
         0.02644 
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cj0  = 
          9.4246e-012 

 
 
(b) Figure 10.14 shows the depletion capacitance versus the voltage across the 
junction. 
 
 

 
 
 Figure 10.14  Depletion Capacitance of a pn Junction 
 

10.4.2 Diffusion capacitance 

When a pn junction is forward biased, holes are injected from the p-side of the 
metallurgical junction into the n-type material.  The holes are momentarily 
stored in the n-type material before they recombine with the majority carriers 
(electrons) in the n-type material.  Similarly, electrons are injected into and 
temporarily stored in the p-type  material. The electrons then recombine with 
the majority carriers (holes) in the p-type material.  The diffusion capacitance, 
Cd , is due to the buildup of minority carriers charge around the metallurgical  
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junction as the result of forward biasing the pn junction.  Changing the forward 
current or forward voltage, ∆V, will result in the change in the value of the 
stored charge ∆Q,  the diffusion capacitance, Cd , can be found from the gen-
eral expression 
 

 C
Q
Vd =
∆
∆

                  (10.58) 

 
It turns out that the diffusion capacitance is proportional to the forward-biased 
current.   That is 
 
 C K Id d DF=                   (10.59) 
  
where 
 Kd   is constant at a given temperature 
 I DF   is  forward-biased diode current. 
 
 
The diffusion capacitance is usually larger than the depletion capacitance [1, 
6].  Typical values of Cd   ranges from 80 to 1000 pF. 
 
 
A small signal model of the diode is shown in Figure 10.15. 
 

  

Cd

Cj

Rsrd

 
 
 Figure 10.15   Small-signal Model of a Forward-biased pn Junction 
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In Figure 10.15, Cd   and C j  are the diffusion and depletion capacitance, re-

spectively.    RS   is the semiconductor bulk and contact resistance.   The  dy-
namic resistance, rd , of the diode  is given as 
 

 r
nkT
qId

DF
=                   (10.60) 

  
where 
 n     is  constant 
 k     is  Boltzmann’s constant 
  T   is  temperature in degree Kelvin 

q   is  electronic charge. 
 
When a pn junction is reversed biased, Cd  = 0.  The model of the diode is 
shown in Figure 10.16. 

  

Cj

Rs

Rd  
 
 Figure 10.16  Model of a Reverse-biased pn Junction 
 
 
In Figure 10.16, C j   is the depletion capacitance.  The diffusion capacitance is 
zero.  The resistance Rd  is reverse resistance of the pn junction (normally in 
the mega-ohms range). 
 
 
 
Example 10.8 
 
A certain diode has contact potential; VC  = 0.55V,  C j0  =  diffusion capaci-
tance at zero biased is   8 pF;  the diffusion capacitance at 1mA is 100 pF.   
Use MATLAB to plot the diffusion and depletion capacitance for forward- bi-
ased voltages from 0.0 to 0.7 V.  Assume that I S = 10-14 A,  n = 2.0  and step-
junction profile. 
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Solution 
 
Using Equations  (10.38) and (10.59), we write the MATLAB program to ob-
tain the diffusion and depletion capacitance. 
 
MATLAB Script 
 

% 
% Diffusion and depletion Capacitance 
% 
cd1 = 100e-12; id1 = 1.0e-3; cj0 = 8e-12; vc =0.55; 
m = 0.5; 
is = 1.0e-14; nd = 2.0; 
k = 1.38e-23; q = 1.6e-19; T = 300; 
kd = cd1/id1; 
vt = k*T/q; 
v = 0.0:0.05:0.55; 
nv = length(v); 
 
for i = 1:nv 
 id(i) = is*exp(v(i)/(nd*vt)); 
 cd(i) = kd*id(i); 
 ra(i) = v(i)/vc; 
 cj(i) = cj0/((1 - ra(i)).^m); 
end 
 
subplot(121) 
plot(v,cd) 
title('Diffusion Cap.') 
xlabel('Voltage, V'), ylabel('Capacitance, F') 

 
subplot(122) 
plot(v,cj) 
title('Depletion Cap.') 
xlabel('Voltage, V'), ylabel('Capacitance, F') 

 
 
Figure 10.17 shows the depletion and diffusion capacitance of a forward- 
biased pn junction. 
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  (a)     (b) 
 
 Figure 10.17  (a) Depletion and (b) Diffusion Capacitance 
 
 
 
 
10.5 BREAKDOWN VOLTAGES OF PN JUNCTIONS 
 
The electric field E is related to the charge density through the Poisson’s equa-
tion 
 

 
dE x

dx
x

S

( ) ( )
=
ρ
ε ε0

                 (10.61) 

  
where 
 εS     is the semiconductor dielectric constant 
 ε0   is the permittivity of free space, 8.86 * 10-14  F/cm 
 ρ( )x  is the charge density. 
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For an abrupt junction with charge density  shown in Figure 10.12, the charge 
density 
 

 
ρ( )x qN W x

qN x W
A P

D N

= − − < <
= < <

0
0                (10.62) 

 
The maximum electric field 
 

 E
qN W qN WA P

s

D N

s
max = =

ε ε ε ε0 0
                (10.63)

  
 
Using Equation (10.47) or (10.48, Equation (10.63) becomes 
 

 E
qN N V V

N N
D A C S

S A D
max

( )
( )

=
−

+
2

0ε ε
               (10.64) 

For a linearly graded junction, the charge density, ρ( )x is given as (see Figure 
10.13) 

 ρ( )x ax=   − < <
W

x
W

2 2
               (10.65) 

and the maximum electric field can be shown to be 
 

 E
aq

W
S

max =
8 0

2

ε ε
                 (10.66) 

  
where 
 a   is  slope of charge density 
 W   is  width of depletion layer and 
 

  
W

W WN P2
= =  

 
The width of the depletion region, W, can be obtained from Equation (10.49). 
 
Equation (10.64) indicates that as the reverse voltage increases, the magnitude 
of the electric field increases.  The large electric field accelerates the carriers 
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crossing the junction.  At a critical field, Ecrit , the accelerated carriers in the 
depletion region have sufficient energy  to  create new electron-hole pairs as 
they collide with other atoms.   The secondary electrons can in turn create 
more carriers in the depletion region.  This is termed the avalanche breakdown 
process.  For silicon with an impurity concentration of 1016 cm-3, the critical 
electric field is about 2.0x105 V/cm. 
 
In a highly doped pn junctions, where the impurity concentration is about 1018  
cm-3 , the critical electric field is about 106 V/cm.  This high electric field is 
able to strip electrons away from the outer orbit of the silicon atoms, thus cre-
ating hole-electron pairs in the depletion region.  This mechanism of break-
down is called zener breakdown.  This breakdown mechanism does not involve 
any multiplication effect.  Normally, when the breakdown voltage is less than 
6V, the mechanism is zener breakdown process.  For breakdown voltages be-
yond 6V, the mechanism is generally an avalanche breakdown process. 
 
For an abrupt junction, where one side is heavily doped, the electrical proper-
ties of the junction are determined by the lightly doped side.  Experimentally, 
the breakdown voltage of semiconductor step junction ( n+p or p+n ) as the 
function of doping concentration in the lightly doped side is given as [7]  
 

 V k
N

BR
B=






−

1016

0 75.

                 (10.67) 

  
where 
 
 k     =  25V  for Ge 
                     =  60V for Si 
  
and 
 N B   is the doping concentration of lightly doped side. 
 
 
The following example shows the effect of doping concentration on breakdown 
voltage. 
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Example 10.9 
 
Use MATLAB to plot the breakdown voltage versus doping concentration for 
a one-sided step junction for silicon and germanium, and  using doping con-
centration from 1014 to 1019 cm-3. 
 
Solution 
 
Using Equation (10.67),  we calculate the breakdown voltage for various dop-
ing concentration. 
 
 
MATLAB Script 
 

% 
% Breakdown voltage 
% 
k1 = 25; 
 k2 = 60; 
nb = logspace(14,19); 
n = length(nb); 
 
for i = 1:n 
 vbr1(i) = k1*(nb(i)/1.0e16)^(-0.75); % Ge breakdown voltage 
 vbr2(i) = k2*(nb(i)/1.0e16)^(-0.75); % Si breakdown voltage 
end 

 
semilogx(nb,vbr1,'w', nb,vbr2,'w') 
xlabel('Impurity Concentration, cm-3') 
ylabel('Breakdown Voltage,V') 
title('Breakdown Voltage vs. Impurity Concentration') 
axis([1.0e14,1.0e17,0,2000]) 
text(2.0e14,270,'Ge') 
text(3.0e14,1000,'Si') 

 
Figure 10.18 shows the plot of breakdown voltage of one-sided abrupt junc-
tion. 
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 Figure 10.18  Breakdown Voltage versus Impurity Concentration 
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EXERCISES  
 
10.1 In the case of silicon  for temperature below 700 oK,  the density of  
 intrinsic created carriers, ni , can be approximated as [8] 
 

  n T ei
T=

−










387 1016 3
2

7 02 103

. *
. *

               (10.68) 
 
 (a) Use  MATLAB to plot the intrinsic carrier concentration  
  versus (1000/T) where T is temperature in degrees Kelvin. 
 (b) Compare the above relation for intrinsic concentration with  

that of  Example 10.1. Plot  the difference between of  ni  
for  Equations (10.1) and (10.68). 

 
 
10.2 Assuming that at 300 oK the mobile carrier concentrations of intrinsic  

germanium and silicon semiconductor materials are 2.390*1013 and 
1.52*1010 , respectively, use MATLAB to plot the E EF i−  versus 
donor concentration for Ge and Si.  Assume donor concentrations 
from 1010  to 1018. 
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10.3 For power devices with breakdown voltages above 100V and  
resistivities greater than 1 ohm-cm  (n-type silicon) and 3 ohm-cm (p-
type silicon), the resistivity versus doping concentrations can be sim-
plified to 
 

  ρn DN= −4 596 1015 1. *  
 
  ρpn AN= −1263 1016 1. *  
  
 (a) Use MATLAB to plot resistivity versus doping  concentration  
  (from 1012  to 1018  cm-3 ). 
 (b) Compare your results with those obtained in Example 10.4. 
 
 
10.4 For Ge pn junction with N A   = 1018 cm-3 , N D   = 1015 cm-3  and ni    
 at 300 oK is 2.39*1013 ,  
 

(a)  Calculate the contact potential.  
(b)  Plot the junction potential for source voltages of -1.0V  to 0.3V. 

 
 
10.5 For the small signal model of the forward-biased pn junction, shown  

in Figure 10.15, RS  = 5Ω,  rd  = 10 Ω, Cd  = 110 pF at I DF  of  1 
mA.  Use MATLAB to plot the equivalent input impedance (magni-
tude and phase) for frequencies from 104 to 1010 Hz. 

  
 
10.6 Empirically, the breakdown voltage of a linearly graded junction can  
 be approximated as [9] 

V k
a

BR =










− −4

21

0 75

10

.

  

 
where   k  = 18 V for Ge  or 40 V for Si. 
 
Use MATLAB to plot the breakdown voltage vs. impurity gradient of 
Ge and Si.  Use impurity gradient values from 1019 to 1024.  
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 CHAPTER ELEVEN 
 

OPERATIONAL AMPLIFIERS 
 
 
The operational amplifier (Op Amp) is one of the versatile electronic circuits.  
It can be used to perform the basic mathematical operations:  addition, subtrac-
tion, multiplication, and division.   They can also be used to do integration and 
differentiation.  There are several electronic circuits that use an op amp as an 
integral element.  Some of these circuits are amplifiers, filters, oscillators, and 
flip-flops.  In this chapter, the basic properties of op amps will be discussed.  
The non-ideal characteristics of the op amp will be illustrated, whenever possi-
ble, with example problems solved  using MATLAB.   
 
 

11.1 PROPERTIES OF THE OP AMP 
 
The op amp, from a signal point of view, is a three-terminal device:  two inputs 
and one output.  Its symbol is shown in Figure 11.1.  The inverting input is 
designated by the ‘-’ sign and non-inverting input by the ‘+’ sign. 
 

   
 
 
 Figure 11.1  Op Amp Circuit Symbol 
 
 
An ideal op amp has an equivalent circuit shown in Figure 11.2.  It is a differ-
ence amplifier, with output equal to the amplified difference of the two inputs.  
 
An ideal op amp has the following properties:  

  
• infinite input resistance,  
• zero output resistance, 
• zero offset voltage,  
• infinite frequency response and 
• infinite common-mode rejection ratio, 
• infinite open-loop gain, A. 
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V1

V2
- A(V2 - V1)

   
 Figure 11.2 Equivalent Circuit of an Ideal Op Amp 
 
 
A practical op amp will have large but finite open-loop gain in the range from 
105 to 109.  It also has a very large input resistance 106 to 1010 ohms.  The out-
put resistance might be in  the range of 50 to 125 ohms.  The offset voltage is 
small but finite and the frequency response will deviate considerably from the 
infinite frequency response.  The common-mode rejection ratio is not infinite 
but finite.  Table 11.1  shows the properties of the general purpose 741 op 
amp. 
 

Table 11.1 
Properties of  741 Op Amp 

 
Property 
 

Value (Typical) 

Open Loop Gain 2x105 
Input resistance 2.0 M 
Output resistance 75 Ω 
Offset voltage 1 mV 
Input bias current 30 nA 
Unity-gain bandwidth 1 MHz 
Common-mode rejection ratio 95 dB 
Slew rate 0.7 V/µV 

 
  
Whenever there is a connection from the output of the op amp to the inverting 
input as shown in Figure 11.3, we have a negative feedback connection 
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Z2

Z1

I2
I1

 
 
    (a) 
 

Z2

Z1

I2

I1

 
 
    (b) 
 
 Figure 11.3     Negative Feedback Connections for Op Amp  
   (a) Inverting  (b) Non-inverting configurations 
 
 
With negative feedback and  finite output voltage, Figure 11.2 shows that 
 

( )V A V VO = −2 1      (11.1)
  
Since the open-loop gain is very large, 
 

( )V V
V
A
O

2 1 0− = ≅      (11.2)
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Equation (11.2) implies that the two input voltages are also equal.  This condi-
tion is  termed the concept of  the virtual short circuit.  In addition, because of 
the  large input resistance of the op amp, the latter is assumed to take no cur-
rent for most calculations. 
 
 
 

11.2 INVERTING CONFIGURATION 
 
 
An op amp circuit connected in an inverted closed loop configuration is shown 
in Figure 11.4. 

 

I1

I2

Z1

Z2

Vo

Vin

Zin

Va A

 
 
 Figure 11.4  Inverting Configuration of  an Op Amp 
 
 
Using  nodal analysis at node A, we have 
 

 
V V

Z
V V

Z
Ia in a O−

+
−

+ =
1 2

1 0     (11.3) 

  
From the concept of a virtual short circuit, 
 

V Va b= = 0       (11.4) 
 

and because of the large input resistance, I1   =  0.  Thus, Equation (11.3) sim-
plifies to  
 

 
V
V

Z
Z

O

IN
= − 2

1
      (11.5) 

 

© 1999 CRC Press LLC 

 

© 1999 CRC Press LLC 



 
The minus sign implies that VIN  and V0  are out of phase by 180o.  The input 
impedance, ZIN ,  is given as 
 

Z
V
I

ZIN
IN= =
1

1      (11.6) 

 
If  Z R1 1=  and   Z R2 2= ,   we have an inverting amplifier shown in Figure 
11.5. 
 

        

Vo

Vin

R2

R1

 
 
 Figure 11.5  Inverting Amplifier 
 
 
The closed-loop gain of the amplifier is 
 

V
V

R
R

O

IN
= − 2

1
      (11.7) 

 

and the input resistance is R1 .  Normally, R2   >  R1   such that  V VIN0 > .     
With the  assumptions of very large open-loop gain and high input resistance, 
the closed-loop gain of the inverting amplifier  depends on the external com-
ponents R1 , R2 ,  and  is  independent of the open-loop gain. 
 

For Figure  11.4,  if   Z R1 1=   and  Z
jwC2
1

= ,    we obtain an integrator 

circuit shown in Figure 11.6.  The closed-loop gain of the integrator is 

 
V
V jwCR

O

IN
= −

1

1
     (11.8) 
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Vo

Vin

C

R1

IC

IR

 
 
 Figure 11.6  Op Amp Inverting Integrator 
 
 
In the time domain 
 

 
V
R

IIN
R

1
=  and I C

dV
dtC

O= −     (11.9) 

 
Since I IR C=  

 ( ) ( ) ( )V t
R C

V t d VO IN

t

O= − +∫
1

0
1

0
τ                (11.10) 

 
The above circuit is termed the Miller integrator.  The integrating time con-
stant is CR1 .   It behaves as a lowpass filter,  passing low frequencies and at-
tenuating high frequencies.  However, at dc the capacitor becomes open cir-
cuited and there is no longer a negative feedback from the output to the input.  
The output voltage then saturates.  To provide finite closed-loop gain at dc,  a  
resistance  R2  is connected in parallel with the capacitor.  The circuit is shown 
in Figure 11.7.  The resistance R2  is chosen such that R2  is  greater than R.  
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Vo

Vin

C

R1

R2

 
 
 Figure 11.7  Miller Integrator with Finite Closed Loop Gain at DC 
 
 

For Figure 11.4, if  Z
jwC1

1
=  and Z R2 = ,   we obtain a differentiator cir-

cuit shown in Figure 11.8.  From Equation (11.5), the closed-loop gain of the 
differentiator is 
 

 
V
V

jwCRO

IN
= −                   (11.11) 

 

             

Vo

Vin

C

R1

IR

IC

 
 
 Figure 11.8  Op Amp Differentiator Circuit 
 
 
In the time domain 
 

 I C
dV

dtC
IN=  , and ( )V t I RO R= −                (11.12) 

 
Since 
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 ( ) ( )I t I tC R=   
 
we have 

 ( )
( )

V t CR
dV t

dtO
IN= −                  (11.13) 

 
Differentiator circuits will differentiate input signals.  This implies that if an 
input signal  is rapidly changing, the output of the differentiator circuit will ap-
pear “ spike-like.” 
 
The inverting configuration can be modified to produce a weighted summer.  
This circuit is shown in Figure 11.9. 
 

R1

R2

RF

Rn

In

IF

V1

V2

Vn

I1

I2

Vo

 
 
Figure 11.9  Weighted Summer Circuit 

 
 
From Figure 11.9 

 

I
V
R

I
V
R

I
V
Rn

n

n
1

1

1
2

2

2
= = =, , .......,              (11.14) 

also 
 
I I I IF N= + +1 2 ......                  (11.15) 
 
V I RO F F= −                   (11.16) 

 
Substituting Equations (11.14) and (11.15) into Equation (11.16) we have 
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 V
R
R

V
R
R

V
R
R

VO
F F F

N
N= − + +









1
1

2
2 .....                (11.17) 

 
The frequency response of  Miller integrator, with finite closed-loop gain at dc, 
is obtained in the following example.  
 
 
Example 11.1 

For Figure 11.7, (a ) Derive the expression for the transfer function 
V
V

jwo

in
( ) .  

(b)  If C  = 1 nF and R1  = 2KΩ, plot the magnitude response for R2  equal to 
(i) 100 KΩ,  (ii) 300KΩ,  and (iii) 500KΩ. 
 
 
Solution 

 Z R
sC

R
sC R2 2

2

2

2 2

1
1

= =
+

                (11.18) 

 
 Z R1 1=                   (11.19) 
 

 
V
V

s

R
R

sC R
o

in
( ) =

−

+

2

1

2 21
                 (11.20) 

   

 
V
V

s
C R

s C R

o

in
( ) =

−

+

1

1
2 1

2 2

                 (11.21) 

 
MATLAB Script 
 

% Frequency response of lowpass circuit 
c = 1e-9; r1 = 2e3; 
r2 = [100e3, 300e3, 500e3]; 
n1 = -1/(c*r1); d1 = 1/(c*r2(1)); 
num1 = [n1]; den1 = [1 d1]; 
w = logspace(-2,6); 
h1 = freqs(num1,den1,w); 
f = w/(2*pi); 
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d2 = 1/(c*r2(2)); den2 = [1 d2]; 
h2 = freqs(num1, den2, w); 
d3 = 1/(c*r2(3)); den3 = [1 d3]; 
h3 = freqs(num1,den3,w); 
semilogx(f,abs(h1),'w',f,abs(h2),'w',f,abs(h3),'w') 
xlabel('Frequency, Hz') 
ylabel('Gain') 
axis([1.0e-2,1.0e6,0,260]) 
text(5.0e-2,35,'R2 = 100 Kilohms') 
text(5.0e-2,135,'R2 = 300 Kilohms') 
text(5.0e-2,235,'R2 = 500 Kilohms') 
title('Integrator Response') 

 
Figure 11.10 shows the frequency response of  Figure 11.7. 
 

        
 
 Figure 11.10   Frequency Response of  Miller Integrator with Finite  
   Closed-Loop Gain at DC 

 

© 1999 CRC Press LLC 

 

© 1999 CRC Press LLC 



11.3 NON-INVERTING  CONFIGURATION 
 
 
An op amp connected in a non-inverting configuration is shown in Figure 
11.11. 
 

        

Z2

Z1

I1 Vo

Va

Vin
Zin

A

 
 
 Figure 11.11  Non-Inverting Configuration 
 
 
Using nodal analysis at node A 
 

V
Z

V V
Z

Ia a O

1 2
1 0+

−
+ =                  (11.22) 

 
From the concept of a virtual short circuit, 
 
 V VIN a=                   (11.23) 
 
and because of the large input resistance ( i1  = 0 ),  Equation (11.22) simplifies 
to 
 

 
V
V

Z
Z

O

IN
= +1 2

1
                  (11.24) 

 
The gain of the inverting amplifier is positive.  The input impedance of the 
amplifier ZIN  approaches infinity, since the current that flows into the posi-
tive input of the op-amp is almost zero. 

 

© 1999 CRC Press LLC 

 

© 1999 CRC Press LLC 



If  Z1 = R1  and Z2 = R2 , Figure 11.10 becomes a voltage follower with gain.  
This is shown in Figure 11.11. 

                     

VoVin

R2

R1

 
 
 
 Figure 11.12  Voltage Follower with Gain 
 
 
The voltage gain is 
 

 
V
V

R
R

O

IN
= +







1 2

1
                 (11.25) 

 
The zero, poles and the  frequency response of a non-inverting configuration 
are obtained in Example 11.2. 
 
 
Example 11.2 
 
For the Figure  11.13  (a) Derive the transfer function. (b) Use MATLAB to 
find the poles and zeros.  ( c ) Plot the magnitude and phase response, assume 
that C1  = 0.1uF, C2  = 1000 0.1uF, R1  = 10KΩ, and R2  = 10 Ω.   
   

               

Vo
Vin

R2

R1

V1

C1

C2

 
 
 Figure 11.13   Non-inverting Configuration 
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Solution 
 
Using  voltage division 

 

 
V

V
s

sC
R sCIN

1 1

1 1

1
1

( ) =
+

                 (11.26) 

 
From Equation (11.24) 
 

 
V
V

s
R
sC

O

1

2

2
1

1
( ) = +                  (11.27) 

 
Using Equations (11.26 ) and (11.27), we have 
 

 
V
V

s
sC R
sC R

O

IN
( ) =

+
+









1
1

2 2

1 1
                (11.28) 

 
The above equation can be rewritten as 
 

 ( )V
V

s
C R s

C R

C R s
C R

O

IN
=

+








+








2 2
2 2

1 1
1 1

1

1
                (11.29) 

 
The MATLAB program that can be used to find the poles, zero and plot the 
frequency response is as follows: 
 

diary ex11_2.dat 
% Poles and zeros, frequency response of Figure 11.13 
% 
% 
c1 = 1e-7; c2 = 1e-3; r1 = 10e3; r2 = 10; 
 
% poles and zeros 
b1 = c2*r2; 
a1 = c1*r1; 
num = [b1 1]; 
den = [a1 1]; 
disp('the zero is') 
z = roots(num) 
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disp('the poles are') 
p = roots(den) 
 
% the frequency response 
w = logspace(-2,6); 
h = freqs(num,den,w); 
gain = 20*log10(abs(h)); 
f = w/(2*pi); 
phase = angle(h)*180/pi; 
subplot(211),semilogx(f,gain,'w'); 
xlabel('Frequency, Hz') 
ylabel('Gain, dB') 
axis([1.0e-2,1.0e6,0,22]) 
text(2.0e-2,15,'Magnitude Response') 
subplot(212),semilogx(f,phase,'w') 
xlabel('Frequency, Hz') 
ylabel('Phase') 
axis([1.0e-2,1.0e6,0,75]) 
text(2.0e-2,60,'Phase Response') 
 
diary 

 
 
The results are: 
 

the zero is 
   z = 
          -100 

 
the pole is 

   p = 
          -1000 

 
The magnitude and phase plots are shown in Figure 11.14 
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 Figure 11.14  Frequency Response of  Figure 11.13 
 
 
 

11.4 EFFECT OF FINITE OPEN-LOOP GAIN 
 
 
For the inverting amplifier shown in Figure 11.15,  if we assume a finite open-
loop gain A,  the output voltage V0  can be expressed as  
 

 ( )V A V VO = −2 1                  (11.30) 
 
Since  V2 0= , 
 

 V
V
A
O

1 = −   
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Vo

Vin

R2

R1

IR1

IR2

A (V2-V1)

V1

V2

 
 
 Figure 11.15    Inverter with Finite Open-loop Gain 
 
 
       
Because the op amp has a very high input resistance, i 1  = 0, we have 
 
 I IR R1 2=                   (11.31) 
 
But 

 I
V V

RR
IN

1
1

1
=

−
=

−V V A
R

IN 0

1
                (11.32) 

Also 
 
 V V I RO R= −1 2 2                  (11.33) 
 
Using Equations (11.30), (11.31) and (11.32), Equation (11.33) becomes 
    

 ( )V
V
A

R
R

V V AO
O

IN O= − − +2

1
               (11.34) 

 
Simplifying Equation (11.34), we get 
 

 ( )
V
V

R R
R R A

O

IN
= −

+ +
2 1

2 11 1
               (11.35) 
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It should be noted that as the open-loop gain  approaches infinity, the closed-
loop gain becomes 
 

 
V
V

R
R

O

IN
≅ − 2

1
 

 
The above expression is identical to Equation  (11.7).    In addition, from 
Equation (11.30) , the voltage V1  goes to zero as the open-loop gain goes to 
infinity.  Furthermore, to minimize the dependence of the closed-loop gain on 
the value of the open-loop gain, A,  we should make 
 

 1 2

1
+







 <<

R
R

A                 (11.36) 

 
This is illustrated by the following example. 
 
 
 
Example 11.3 
 
In Figure 11.15, R1  = 500 Ω, and R2  = 50 KΩ. Plot the closed-loop gain as 
the open-loop gain increases from 102 to 108 . 
 
 
Solution 
 

% Effect of finite open-loop gain 
% 
a = logspace(2,8); 
r1 = 500; r2 = 50e3; r21 = r2/r1; 
g = []; 
n = length(a); 
for i = 1:n 
 g(i) = r21/(1+(1+r21)/a(i)); 
end 
semilogx(a,g,'w') 
xlabel('Open loop gain') 
ylabel('Closed loop gain') 
title('Effect of Finite Open Loop Gain') 
axis([1.0e2,1.0e8,40,110]) 

 

© 1999 CRC Press LLC 

 

© 1999 CRC Press LLC 



Figure 11.16 shows the characteristics of the closed-loop gain as a function of 
the open-loop gain. 
 

 
 
 Figure 11.16     Closed-Loop Gain versus Open-Loop Gain 
 
 
For the voltage follower with gain shown in Figure 11.12, it can be shown that 
the closed-loop gain of the amplifier with finite open-loop gain is 
 

 
( )
( )

V
V

R R

R R A
O

IN
= −

+

+ +

1

1 1
2 1

2 1

                (11.37) 
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11.5 FREQUENCY RESPONSE OF OP AMPS 
 
The simplified block diagram of the internal structure of the operational ampli-
fier is shown in Figure 11.17. 
 
 

Vo

V1

V2

Difference
amplifier

Voltage
amplifier
and level

shifter

output
stage

amplifier
 

 
 
 Figure 11.17  Internal Structure of Operational Amplifier 
 
 
Each of the individual sections of the operational amplifier contains a lowpass 
RC section, with its corner (pole) frequency.  Thus, an op amp will have an 
open-loop gain with frequency that can be expressed as 
 

 ( ) ( )( )( )A s
A

s w s w s w
O=

+ + +1 1 11 2 3

               (11.38) 

  
where 
 w w w1 2 3< <  
 
 AO =  gain at dc 
 
 
For most operational amplifiers, w1  is very small (approx. 20π  radians /s) 
and w2  might be in the range of  2 to 6  mega-radians/s. 
 
 
 
Example 11.4 
 
The constituent parts of an operational amplifier have the following internal 
characteristics:  the pole of the difference amplifier is at 200 Hz and the gain is 
- 500.  The pole of the voltage amplifier and level shifter is 400 KHz and has a 
gain of 360.  The pole of the output stage is  800KHz and the gain is 0.92. 
Sketch the magnitude response of the operational amplifier open-loop gain. 
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Solution 
 
The lowpass filter response can be expressed as  
 

 ( )V
V

jw
C

jf f
O

IN

rstage

p
= −

+1
                (11.39) 

 
or 

 ( )V
V

s
C

s w
O

IN

rstage

p
=

+1
                 (11.40) 

 
The transfer function of the amplifier is given as 
 

 ( ) ( ) ( ) ( )A s
s s s

=
−

+ + +
500

1 400
360

1 8 10
0 92

1 16 105 6π π π
.
.

    (11.41)

   
The above expression simplifies to 
 

 ( )
( )( )( )A s

x
s s s

=
+ + +

2 62 10
400 8 10 16 10

21

5 6

.
.π π π

                (11.42) 

 
MATLAB script 

 
% Frequency response of op amp 
% poles are 
p1 = 400*pi; p2 = 8e5*pi; p3 = 1.6e6*pi; 
p = [p1 p2 p3]; 
% zeros 
z = [0]; 
const = 2.62e21; 
 
% convert to poles and zeros  and  
% find the frequency response 
a3 = 1; 
a2 = p1 + p2 + p3; 
a1 = p1*p2 + p1*p3 + p2*p3; 
a0 = p1*p2*p3; 
den = [a3 a2 a1 a0]; 
num = [const]; 
w = logspace(1,8); 
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h = freqs(num,den,w); 
f = w/(2*pi); 
g_db = 20*log10(abs(h)); 
 
% plot the magnitude response 
semilogx(f,g_db) 
title('Magnitude response') 
xlabel('Frequency, Hz') 
ylabel('Gain, dB') 

 
The frequency response of the operational amplifier is shown in Figure 11.18. 
 

 
 
 Figure 11.18   Open-Loop Gain Characteristics of an Op Amp 
 
 
For an internally compensated op amp, there is a capacitor included on the IC 
chip.  This causes the op amp to have a single pole lowpass response.  The 
process of making one pole dominant in the open-loop gain characteristics is 
called frequency compensation, and the latter is done to ensure the stability of 
the op amp.  For an internally compensated op amp, the open-loop gain A s( )  
can be written as 
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 ( ) ( )A s
A
s w

O

b

=
+1

                 (11.43) 

  
where 

A0  is   dc open-loop gain 
 wb  is  break frequency. 
 
 
For the 741 op amp, A0  = 105  and wb  = 20 π radians/s.  At physical fre-
quencies  s jw= ,   Equation (11.43) becomes 
 

 ( ) ( )A jw
A
jw w

O

b

=
+1

                 (11.44) 

  
For frequencies w  > wb , Equation (11.44) can be approximated by 
 

 ( )A jw
A w

jw
O b=                  (11.45) 

 
The unity gain bandwidth, wt  (the frequency at which the gain goes to unity),  
is given as 
 

w A wt O b=                   (11.46) 
 
For the inverting amplifier shown in Figure 11.5, if we substitute Equation 
(11.43) into Equation (11.35), we get a closed-loop gain 
 

( )
( ) ( )

V
V

s
R R

R R A
s

w R R

O

IN
o

t

= −
+ + +

+

2 1

2 1
2 1

1 1
1

              (11.47) 

 
In the case of non-inverting amplifier shown in Figure 11.12, if we substitute 
Equation (11.43) into Equation (11.37), we get the closed-loop gain expression 
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( )
( ) ( )

V
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s
R R

R R A
s

w R R

O

IN
o

t

=
+

+ + +
+

1

1 1
1

2 1

2 1
2 1

              (11.48)

   
From Equations (11.47) and (11.48), it can be seen that the break frequency for 
the inverting and non-inverting amplifiers is given by the expression 
 

 w
w
R RdB

t
3

2 11
=

+
                 (11.49) 

The following example illustrates the effect of the ratio
R
R

2

1
 on the frequency 

response of op amp circuits. 
 
 
 
Example 11.5 
 
An op amp  has an open-loop dc gain of  107 ,   the unity gain bandwidth of 

108  Hz.   For an op amp connected in an inverting configuration (Figure 
11.5), plot the magnitude response of the closed-loop gain. 

if 
R
R

2

1
 = 100 , 600, 1100  

 
Solution 
 
Equation (11.47) can be written as 
 

 
V
V

s

w R

R R
R

s
w
A

w
R

R

o

IN

t

t t
( )

( )

( )

=
+

+ +
+

2

1
2

1

0 2

1

1

1

              (11.50) 

 
MATLAB script 
 

% Inverter closed-loop gain versus frequency 
w = logspace(-2,10);    f = w/(2*pi); 
r12 = [100 600 1100]; 
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a =[];    b = [];   num = [];   den = [];  h = []; 
for i = 1:3 
 a(i) = 2*pi*1.0e8*r12(i)/(1+r12(i)); 
 b(i) = 2*pi*1.0e8*((1/(1+r12(i))) + 1.0e-7); 
 num = [a(i)]; 
 den = [1 b(i)]; 
 h(i,:) = freqs(num,den,w); 
end 
semilogx(f,abs(h(1,:)),'w',f,abs(h(2,:)),'w',f,abs(h(3,:)),'w') 
title('Op Amp Frequency Characteristics') 
xlabel('Frequency, Hz') 
ylabel('Gain') 
axis([1.0e-2,1.0e10,0,1200]) 
text(1.5e-2, 150, 'Resistance ratio of 100') 
text(1.5e-2, 650, 'Resistance ratio of 600') 
text(1.50e-2, 1050, 'Resistance ratio of 1100') 

 
 
Figure 11.19 shows the plots obtained from the MATLAB program. 
 

          
 
 Figure 11.19   Frequency Response of  an Op Amp Inverter with  

   Different Closed Loop Gain
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11.6 SLEW RATE AND FULL-POWER BANDWIDTH 
 
 
Slew rate (SR) is a measure of the maximum possible rate of change of the out-
put voltage of an op amp.  Mathematically, it is defined as 
 

SR
dV
dt

O=
max

                  (11.51) 

 
The slew rate is often specified on the op amp data sheets in V/µs.  Poor op 
amps might have slew rates around 1V/µs and good ones might have slew rates 
up to 1000 V/µs are available, but the good ones  are relatively expensive. 
 
Slew rate is important when an output signal must follow a large input signal 
that is rapidly changing.  If the slew rate is lower than the rate of change of the 
input signal, then the output voltage will be distorted.  The output voltage will 
become triangular, and attenuated.  However, if the slew rate is higher than the 
rate of change of the input signal, no distortion occurs and input and output of 
the op amp circuit will  have similar wave shapes. 
 
As mentioned in the Section (11.5), frequency compensated op amp has an in-
ternal capacitance that is used to produce a dominant pole.   In addition, the op 
amp has a limited output current capability, due to the saturation of the input 
stage.  If we designate Imax  as the maximum possible current that is available 
to charge the internal capacitance of an op amp, the charge on the frequency-
compensation capacitor is 
 

CdV Idt=        
 
Thus, the highest possible rate of change of the output voltage is 
 

SR
dV
dt

I
C

O= =
max

max                  (11.52) 

 
For a sinusoidal   input signal given by 

 
( )v t V wti m= sin                  (11.53) 

 
The rate of change of the input signal is 
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( )dv t
dt

wV wti
m= cos                  (11.54) 

Assuming that the input signal is applied to a unity gain follower, then the out-
put rate of change 

 
( )dV

dt
dv t

dt
wV wtO i

m= = cos                 (11.55) 

 
The maximum value of the rate of change of the output voltage occurs when 
cos( ) ,wt = 1  i.e., wt = 0 2 4, , . ...,π π  the slew rate 
 

SR
dV
dt

wVO
m= =

max

                 (11.56) 

 
Equation (11.56) can be used to define full-power bandwidth. The latter is the 
frequency at which a sinusoidal rated output signal begins to show distortion 
due to slew rate limiting.  Thus 
 

w V SRm o rated, =                  (11.57) 
 
Thus 

f
SR
Vm

o rated
=

2π, ,
                 (11.58) 

 
The full-power bandwidth can be traded for output rated voltage, thus, if the 
output rated voltage is reduced, the full-power bandwidth increases.  The fol-
lowing example illustrates the relationship between the rated output voltage 
and the full-power bandwidth. 
 

 
Example 11.6 
 
The LM 741 op amp has a slew rate of 0.5 V/µs.  Plot the full-power band-
width versus the rated output voltage if the latter varies from ± 1  to  ± 10 V. 
 
Solution 

 
% Slew rate and full-power bandwidth 
 
sr = 0.5e6;   
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v0 = 1.0:10; 
fm = sr./(2*pi*v0); 
 
plot(v0,fm) 
title('Full-power Bandwidth vs. Rated Output Voltage') 
xlabel('Rated output voltage, V') 
ylabel('Bandwidth, Hz') 

 
Figure 11.20 shows the plot for Example 11.6. 
 

 
 
 Figure 11.20  Rated Output Voltage versus Full-power Bandwidth 
 
 
 
 

11.7  COMMON-MODE REJECTION 
 
 
For practical op amps, when two inputs are tied together and a signal applied 
to the two inputs, the output will be nonzero.  This is illustrated in Figure 
11.21a,  where the 
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Vo

Vi,cm

 
    (a) 
 

 

Vo

+

-
Vid

 
 
    (b) 
 

Figure 11.21    Circuits Showing the Definitions of (a) Common- 
  mode Gain and (b) Differential-mode Gain 

 
 
common-mode gain, Acm , is defined as 

 A
v

vcm
o

i cm
=

,
                  (11.59) 

The differential-mode gain, Ad , is defined as 

 A
v
vd

o

id
=                  (11.60) 

 
For an op amp with arbitrary input voltages, V1 and V2 (see Figure 11.21b), 
the differential input signal, vid ,   is  
 
 v V Vid = −2 1                   (11.61) 
 
and the common mode input voltage is the average of the two input signals, 
 

 V
V V

i cm, =
+2 1

2
                 (11.62) 

 
The output of the op amp can be expressed as 
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 V A v A vO d id cm i cm= + ,                  (11.63) 
 
The common-mode rejection ratio (CMRR) is defined as 
 

CMRR
A
A

d

cm
=                  (11.64) 

 
The CMRR represents the op amp’s ability to reject signals that are common to 
the two inputs of an op amp.  Typical values of CMRR  range from 80 to 120 
dB. CMRR decreases as frequency increases. 
   
For an inverting amplifier as shown in Figure 11.5, because the non-inverting 
input is grounded, the inverting input will also be approximately  0 V due to 
the virtual short circuit that exists in the amplifier.  Thus, the common-mode 
input voltage is approximately zero and Equation (11.63) becomes 
 
 V A VO d id≅                   (11.65) 
 
The finite CMRR does not affect the operation of the inverting amplifier. 
 
A method normally used to take into account  the effect of finite CMRR in cal-
culating the closed-loop gain is as follows:  The contribution of the output 
voltage due to the common-mode input is A Vcm i cm, .  This output voltage con-

tribution can be obtained if a differential input signal, Verror , is applied to the 
input of an op amp with zero common-mode gain. 
 
Thus 

V A A Verror d cm i cm= ,                  (11.66) 
 

V
A V

A
V

CMRRerror
cm i cm

d

i cm= =, ,
                (11.67) 

 
Figure 11.22 shows how to use the above technique to analyze a non-inverting 
amplifier with a finite CMRR. 
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Finite CMRR

Vo

R1

R2

Vi

 
    (a) 
 

 

Infinite CMRR

Vo

R1

R2

Verror

Vi

 
    (b) 

 
Figure 11.22   Non-inverting Amplifier (a) Finite CMRR  
  ( b) Infinite CMRR 

 
 
From Figure 11.22b, the output voltage is given as 
 

( ) ( )V V R R
V

CMRR
R RO i

i= + + +1 12 1 2 1               (11.68) 

 
The following example illustrates the effect of a finite CMRR on the closed-
loop gain of a non-inverting amplifier.
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Example 11.7 
 
For the amplifier shown in Figure 11.22, if R2  = 50KΩ and R1  = 1KΩ,  plot 
the closed-loop gain versus CMRR for the following values of the latter:  
10 10 10 10 104 5 6 7 8, , , ,  and 109. 

 

Solution 
 
MATLAB  Script 
 

% Non-inverting amplifier with finite CMRR 
r2 = 50e3; r1 = 1.0e3; rr = r2/r1; 
cmrr = logspace(4,9,6);  gain = (1+rr)*(1+1./cmrr); 
semilogx(cmrr,gain,'wo') 
xlabel('Common-mode Rejection Ratio') 
ylabel('Closed Loop Gain') 
title('Gain versus CMRR') 
axis([1.0e3,1.0e10,50.998, 51.008]) 

 
Figure 11.23 shows the effect of CMRR on the closed loop of a non-inverting 
amplifier. 

 
 
 Figure 11.23    Effect of finite CMRR on the Gain of  a Non-   
   inverting Amplifier 
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EXERCISES  
 
11.1 For the circuit shown in Figure P11.1, (a) derive the transfer function  

 
V
V

sO

IN
( ) .    (b) If R1  =  1KΩ, obtain the magnitude response. 

  

Vo

20 kilohms

R1 1nF
Vin

 
 
 Figure P11.1  An Op Amp Filter 
 
 
11.2 For Figure 11.12, if the open-loop gain is finite, (a) show that the  

closed-loop gain is given by the  expression shown in Equation 
(11.37).   (b) If R2  = 100K and R1  = 0.5K,  plot the percentage error 
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in the magnitude of the closed-loop gain for  open-loop gains of 
10 10 102 4 6, ,  and  108 . 

 
 
11.3 Find the poles and zeros of the circuit shown in Figure P11.3. Use  

MATLAB to plot the magnitude response.  The resistance values are 
in kilohms. 

 

       

Vo

10

1 nF

Vin

1 nF

1

 
 Figure P11.3   An Op Amp Circuit 
 
 
11.4 For the amplifier shown in Figure 11.12, if the open-loop gain is 106, 

R2  = 24K, and R1  = 1K, plot the frequency response for a unity gain 

bandwidth of  10 106 7, ,   and  108  Hz. 
 
 
11.5 For the inverting amplifier, shown in Figure 11.5,  plot the 3-dB  

frequency versus resistance  ratio
R
R

2

1
  for the following values of the 

resistance ratio: 10, 100, 1000, 10,000 and 100,000.  Assume that 
AO = 106  and f t = 107  Hz. 

 
 
11.6 For the inverting amplifier, shown in Figure 11.5,  plot the closed  

loop gain  versus resistance ratio 
R
R

2

1
  for the following open-loop 

gain, AO :  103, 105 and 107.   Assume a unity gain bandwidth  of 
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f t = 107  Hz and resistance ratio,
R
R

2

1
 has the following values: 10, 

100, 1000,  10,000  and  100,000. 
 
 
11.7  An op amp with a slew rate of  1 V/µs  is connected in the unity gain  

follower configuration.  A  square wave of zero dc voltage and a peak 
voltage of 1 V and a frequency of 100 KHz is  connected to the input 
of the unity gain follower.  Write a MATLAB program to plot the 
output voltage of the amplifier. 

 
 
11.8 For the non-inverting amplifier, if Ricm  = 400 MΩ, Rid = 50 MΩ,  

R1  = 2KΩ and R2  = 30KΩ,  plot the input resistance versus the dc 
open-loop gain A0 .   Assume the following values  of the  open-loop 

gain: 10 10 103 5 7, , and 109 . 
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CHAPTER TWELVE 
 

TRANSISTOR CIRCUITS 
 
 
 
In this chapter, MATLAB will be used to solve problems involving metal-
oxide semiconductor field effect  and bipolar junction transistors.  The general 
topics to be discussed in this chapter are dc model of BJT and MOSFET, 
biasing of discrete and integrated circuits,  and frequency response of 
amplifiers. 
 
 

12.1   BIPOLAR JUNCTION TRANSISTORS 
  
Bipolar junction transistor (BJT) consists of two pn junctions connected back-
to-back.  The operation of the BJT depends on the flow of both majority and 
minority carriers.  There are two types of BJT:  npn and pnp transistors.  The 
electronic symbols of the two types of transistors are shown in Figure 12.1. 
 

     

B

E

C

IE

IC

IB

               

B

C
IE

IC

IB

 
  

  (a)    (b) 
 
 Figure 12.1   (a) NPN transistor     (b) PNP Transistor 
 
 
The dc behavior of the BJT can be described by the Ebers-Moll Model.  The 
equations for the model are 
 

 I I
V
VF ES

BE

T
=







 −









exp 1     (12.1) 

 

 I I
V
VR CS

BC

T
=







 −









exp 1     (12.2) 
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and 
 I I IC F F R= −α      (12.3) 
 
 I I IE F R R= − +α      (12.4) 
and 

 ( ) ( )I I IB F F R R= − + −1 1α α     (12.5) 
 
where 
 
 I ES  and  ICS   are the base-emitter and base-collector saturation  
   currents, respectively 
 

α R  is  large signal reverse current gain of a common-base  
  configuration 
 

α F   is large signal forward current gain of the common-base  
  configuration. 
 
and 

 V
kT
qT =       (12.6) 

 
where  

k   is the Boltzmann’s constant ( k  = 1.381  x 10-23  V.C/ o K ),  
T  is the absolute temperature in degrees Kelvin, and  
q  is the charge of an electron (q = 1.602  x 10-19 C). 

 
 
The forward and reverse current gains are related by the expression 
 
 α αR CS F ES SI I I= =      (12.7) 
 
where  
 I S   is the BJT transport saturation current. 
 
 
The parameters  α R   and α F  are influenced by impurity concentrations and 
junction depths. The saturation current, I S , can be expressed as 
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I J AS S=       (12.8) 
 
where 
 A   is the area of the emitter and  
 JS   is the transport saturation current density, and it can be  
  further expressed as 
 

J
qD n

QS
n i

B
=

2

      (12.9) 

 
where 
 
 Dn       is the average effective electron diffusion constant 
 ni        is the intrinsic carrier concentration in silicon  ( ni = 1.45 x  
   1010 atoms / cm3 at 300o K)   
 QB     is the number of doping atoms in the base per unit area. 
 
 
 
The dc equivalent  circuit of the BJT is based upon the Ebers-Moll model.  
The model is shown in Figure 12.2. The current sources α R RI   indicate the 
interaction between the base-emitter and base-collector junctions due to the 
narrow base region. 
 
In the case of a pnp transistor, the directions of the diodes in Figure 12.2 are 
reversed.  In addition, the voltage polarities of Equations (12.1) and (12.2) are 
reversed.  The resulting Ebers-Moll equations for pnp transistors are 

 

I I
V
VE ES

EB

T
=







 −









exp 1 −







 −









α R CS

CB

T

I
V
V

exp 1               (12.10)

    

I I
V
VC F ES

EB

T
= −







 −









α exp 1 +







 −









I

V
VCS

CB

T
exp 1               (12.11) 
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 Figure 12.2   Ebers-Moll Static Model for an NPN transistor   
   (Injection Version) 
 
 
The voltages at the base-emitter and base-collector junctions will define the 
regions of operation. The four regions of operations are forward-active, 
reverse-active, saturation and cut-off.  Figure 12.3 shows the regions of 
operation based on the polarities of the base-emitter and base collector 
junctions. 
 
 
Forward-Active Region 
 
The forward-active region corresponds to forward biasing the emitter-base 
junction and reverse biasing the base-collector junction.  It is the normal 
operational region of transistors employed for amplifications.  If VBE  > 0.5 V 
and VBC  <  0.3V, then equations (12.1) to (12.4) and (12.6) can be rewritten 
as 

 I I
V
VC S

BE

T
=







exp                  (12.12) 
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 I
I V

VE
S

F

BE

T
= −









α
exp                     (12.13) 

 
From Figure 12.1, 

 

( )I I IB C E= − +                 (12.14) 
 
Substituting Equations (12.12) and (12.13) into (12.14), we have 

 

( )
I I

V
VB S

F

F

BE

T
=

− 







1 α
α

exp                 (12.15) 

 

      =








I V
V

S

F

BE

Tβ
exp               (12.16) 

 
where 

 
βF =   large signal forward current gain of common-emitter  
  configuration 

  βF =
α
α
F

F1−
                  (12.17) 

 
From Equations (12.12) and (12.16), we have 

 
I IC F B= β                   (12.18) 

 
We can also define,βR , the large signal reverse current gain of the common-
emitter configuration as 

 

β
α
αR
R

R
=

−1
                  (12.19) 
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 Figure 12.3   Regions of Operation for a BJT as Defined by the Bias  
   of  VBE  and VBC  
 
 
Reverse-Active Region 

 
The reverse-active region corresponds to reverse biasing the emitter-base 
junction and forward biasing the base-collector junction.  The Ebers-Moll 
model in the reverse-active region  (VBC   >  0.5V and VBE  < 0.3V) simplifies to 
 

I I
V
VE S

BC

T
=









                  (12.20) 

 

I
I V

VB
S

R

BC

T
=









β

exp                  (12.21) 

 
Thus, 

I IE R B= β                                (12.22) 
 
The reverse-active region is seldom used. 
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Saturation and Cut-off Regions 
 

The saturation region corresponds to forward biasing both base-emitter and 
base-collector junctions.  A switching transistor will be in the saturation region 
when the device is in the conducting or “ON” state.  
 
The cut-off region corresponds to reverse biasing the base-emitter and base-
collector junctions.  The collector and base currents are very small compared 
to those that flow when transistors are in the active-forward and saturation 
regions.   In most applications, it is adequate to assume that  
I I IC B E= = = 0  when a BJT is in the cut-off region.  A switching 
transistor will be in the cut-off region when the device is not conducting or in 
the “OFF” state. 

 
 
Example 12.1 
 
Assume that a BJT has  an emitter area of 5.0 mil2, βF =120,  βR = 0 3.  

transport current density, JS = −2 10 10*  µA mil/ 2 and  T = 300oK.   Plot 
I E versus VBE   for VBC  = -1V. Assume 0 < VBE  <  0.7 V. 
 
Solution 
 
From Equations (12.1), (12.2) and (12.4), we can write the following 
MATLAB program. 
 
MATLAB Script 
 

%Input characteristics of a BJT 
diary ex12_1.dat 
diary on 
k=1.381e-23; temp=300; q=1.602e-19; 
cur_den=2e-10; area=5.0; beta_f=120; beta_r=0.3; 
vt=k*temp/q; is=cur_den*area; 
alpha_f=beta_f/(1+beta_f);  
alpha_r = beta_r/(1+beta_r); 
ies=is/alpha_f; 
vbe=0.3:0.01:0.65;  
ics=is/alpha_r; 
m=length(vbe) 
for i = 1:m 
 ifr(i) = ies*exp((vbe(i)/vt)-1); 
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 ir1(i) = ics*exp((-1.0/vt)-1); 
 ie1(i) = abs(-ifr(i) + alpha_r*ir1(i)); 
end 
plot(vbe,ie1) 
title('Input characteristics') 
xlabel('Base-emitter voltage, V') 
ylabel('Emitter current, A') 

 
Figure 12.4 shows the input characteristics. 
 

 
 
 Figure 12.4   Input Characteristics  of a Bipolar Junction Transistor  
 
 
Experimental studies indicate that the collector current of the BJT in the 
forward-active region increases linearly with the voltage between the collector-
emitter VCE.  Equation 12.12 can be modified as 

 

I I
V
V

V
VC S

BE

T

CE

AF
≅









 +






exp 1                 (12.23) 

 
where 

VAF    is a constant dependent on the fabrication process.   
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Example 12.2 
 
For an npn transistor with emitter area of 5.5 mil2, αF = 0 98. ,  α R = 0 35. ,  

V VAF = 250  and transport current density  is 2 0 10 9. x −  µA mil/ 2 .  Use 
MATLAB to plot the output characteristic for VBE =  0.65 V.  Neglect the 
effect of VAF on the output current IC .    Assume a temperature of 300 oK. 
 
 
Solution 
 
MATLAB Script 
 

%output characteristic of an npn transistor 
% 
diary ex12_2.dat 
k=1.381e-23; temp=300; q=1.602e-19; 
cur_den=2.0e-15; area=5.5; alpha_f=0.98;  
alpha_r=0.35; vt=k*temp/q; is=cur_den*area; 
ies=is/alpha_f; ics=is/alpha_r; 
vbe= [0.65]; 
vce=[0 0.07 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1 2 4 6]; 
n=length(vbe); 
m=length(vce); 
for i=1:n 
  for j=1:m 
    ifr(i,j)= ies*exp((vbe(i)/vt) - 1); 
    vbc(j) = vbe(i) - vce(j); 
    ir(i,j) = ics*exp((vbc(j)/vt) - 1); 
    ic(i,j) = alpha_f*ifr(i,j) - ir(i,j); 
  end 
end 
ic1 = ic(1,:); 
plot(vce, ic1,'w') 
title('Output Characteristic') 
xlabel('Collector-emitter Voltage, V') 
ylabel('Collector current, A') 
text(3,3.1e-4, 'Vbe = 0.65 V') 
axis([0,6,0,4e-4]) 
 

 
Figure 12.5 shows the output characteristic. 
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 Figure 12.5  Output Characteristic on an NPN Transistor 
 
 
 

12.2 BIASING  BJT DISCRETE CIRCUITS 
 
12.2.1 Self-bias circuit 
 
One of the most frequently used biasing circuits for discrete transistor circuits 
is the self-bias of the emitter-bias circuit shown in Figure 12.6.  
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    (b) 
 
 Figure 12.6   (a) Self-Bias Circuit  (b) DC Equivalent Circuit of (a) 
 
 
The emitter resistance, RE ,  provides stabilization of the bias point.  If VBB   
and RB  are the Thevenin equivalent parameters for the base bias circuit, then 

 

V
V R

R RBB
CC B

B B
=

+
2

1 2
                 (12.24) 

 

R R RB B B= 1 2                   (12.25) 
 
Using Kirchoff’s  Voltage Law for the base circuit, we have 

 
V I R V I RBB B B BE E E= + +                 (12.26) 

 
Using Equation (12.18) and  Figure 12.6b, we have 
 

( )I I I I I IE B C B F B F B= + = + = +β β 1               (12.27) 
 
Substituting  Equations (12.18) and (12.27) into (12.26), we have 
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( )I
V V

R RB
BB BE

B F E

=
−

+ +β 1
                (12.28) 

or 
 

 ( )I
V V

R
R

C
BB BE

B

F

F

F
E

=
−

+
+

β
β
β

1
                (12.29) 

 
Applying KVL at the output loop of Figure 12.6b gives 
 
 V V I R I RCE CC C C E E= − −                 (12.30) 
 

         = − +



V I R R

CC C C
E

Fα                (12.31) 

 
 
 
12.2.2 Bias stability 
 
Equation  (12.30) gives the parameters that influence the bias current IC .  The 
voltage VBB  depends on the supply voltage VCC .  In some cases, VCC  would 
vary with IC , but by using a stabilized voltage supply we can ignore the 
changes in VCC ,  and hence  VBB .   The changes in the resistances RBB  and 
RE are negligible.  There is a variation of βF   with respect to changes in IC .    
A typical plot of βF  versus IC   is shown in Figure 12.7. 
 

 

Bf________
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IC  
 Figure 12.7  Normalized plot of βF  as a Function of Collector  
   Current
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Temperature changes cause two transistor parameters to change.  These are (1) 
base-emitter voltage (VBE ) and (2) collector leakage current between the base 
and collector  ( ICBO ).  The variation on VBE   with temperature is similar to 
the changes of the pn junction diode voltage with temperature.  For silicon 
transistors, the voltage VBE   varies almost linearly with temperature as 

 

( )∆V T T mVBE ≅ − −2 2 1                 (12.32) 
 
where 

T1   and T2 are in degrees Celsius. 
 
The collector-to-base leakage current, ICBO ,  approximately doubles every 10o 
temperature rise.  As discussed in Section 9.1,  if  ICBO1  is the reverse leakage 
current at room temperature (25 oC), then  

 

I ICBO CBO

T
O C

2 12
2 25 10

=
−





/

 
 
and 

∆I I I ICBO CBO CBO= − =2 1  
 

             = −












−



ICBO

T
O C

2 1
2 25 10/

               (12.33) 

 
Since the variations in ICBO  and VBE are temperature dependent, but changes  
in VCC  and βF  are due to factors  other than temperature, the information 
about the changes in VCC  and βF   must be specified. 

 
From the above discussion, the collector current is a function of four variables: 
V I VBE CBO F CC, , , .β   The change  in collector current can be obtained using 
partial derivatives.  For small parameter changes, a change in collector current 
is given as   

 

∆ ∆ ∆ ∆ ∆I
I

V
V

I
V

I
I I

V
VC

C

BE
BE

C

CBO
CBO

C

F
F

C

CC
CC= + + +

∂
∂

∂
∂

∂
∂β

β
∂
∂

    (12.34)  
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The stability factors can be defined for the four variables  as 
 

S
I IC

F

C

F
β

∂
∂β β

= ≅
∆
∆

 

 

S
I

V
I

Vv
C

BE

C

BE
= ≅

∂
∂

∆
∆

 

 

S
I

I
I

II
C

CBO

C

CBO
= ≅

∂
∂

∆
∆

 

and       

S
I

V
I

VVCC
C

CC

C

CC
= ≅

∂
∂

∆
∆

                 (12.35) 

 
Using the stability factors, Equation (12.34) becomes 

 
∆ ∆ ∆ ∆ ∆I S V S S I S VC V BE F I CBO VCC CC= + + +β β         (12.36) 

 
From Equation (12.30), 

S
dI

dV R R
V

C

BE B

F
E

F

F

= = −
+ +





1
1

β
β

β
              (12.37) 

 
From Equation (12.31), 

 

I
V V

R RC
CC CE

C
E

F

=
−

+ α
                 (12.38) 

 
Thus, the stability factor SVCC  is given as 

 

 S
dI

dV R RVCC
C

CC C E F
= =

+
1

α
              (12.39) 

 
To obtain the stability factor SI ,  an expression for IC   involving ICBO  needs 
to be derived.  The derivation is assisted by referring to Figure 12.8. 
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 Figure 12.8  Current in Transistor including ICBO  

 
 
The current 

I I IC C CBO= +'                   (12.40) 
and 

( )I I IC F B CBO
' = +β                  (12.41) 

 
From Equations (12.40) and (12.41), we have 

 

( )I I IC F B F CBO= + +β β 1                 (12.42) 
 
Assuming that β βF F+ ≅1 , then 

 
I I IC F B F CBO= +β β                  (12.43) 

 
so 

I
I

IB
C

F
CBO= −

β
                 (12.44) 

 
The loop equation of the base-emitter circuit of Figure 12.6(b) gives 
 

( )V V I R R I IBB BE B BB E B C− = + +     
 

      ( )= + +I R R R IB BB E E C                (12.45) 
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Assuming thatβ βF F+ ≅1  and substituting Equation (12.44) into (12.45), 
we get 

( )V V R R
I

I I RBB BE BB E
C

F
CBO C E− = + −







 +

β
              (12.46) 

Solving for IC , we have 

( )
( )I

V V R R I

R R
R

C
BB BE BB E CBO

BB E

F
E

=
− + +

+
+β

               (12.47) 

 
Taking the partial derivative, 

 

( )S
I

I
R R

R R
R

I
C

CBO

BB E

BB E

F
E

= =
+

+
+

∂
∂

β

               (12.48) 

 
The stability factor involving βF  and Sβ can also be found by taking the 
partial derivative of Equation (12.47).  Thus, 

 

( ) ( )[ ]
( )

S
I R R V V R R I

R R R
C B E BB BE B E CBO

B E E
β

∂
∂β β

= =
+ − + +

+ +
2              (12.49) 

 
The following example shows the use of MATLAB for finding the changes in 
the quiescent point  of a transistor due variations in temperature, base-to-
emitter voltage and common emitter current gain. 
 
 
Example 12.3 

 
The self-bias circuit of Figure 12.6 has the following element values: 
R K R K R K R KB B E C F1 250 10 12 6 8= = = =, , . , . , β  varies from 
150 to 200 and VCC   is 10 0 05± .  V.  ICBO  is 1 µA at 25  0C.   Calculate the 
collector current at 25 oC and plot the change in collector current for  
temperatures between 25 and 100 oC.  Assume VBE and βF at 25 oC  are 0.7 V 
and 150,  respectively. 
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Solution 
 
Equations  (12.25), (12.26), and (12.30) can be used to calculate the collector 
current.  At each temperature, the stability factors are calculated using 
Equations (12.37), (12.39), (12,48) and (12.49).  The changes in VBE  and  
ICBO  with temperature are obtained using Equations (12.32) and (12.33), 
respectively.  The change in  IC   for each temperature is calculated using 
Equation (12.36). 
 
MATLAB Script: 

 
% Bias stability 
% 
rb1=50e3; rb2=10e3; re=1.2e3; rc=6.8e3; 
vcc=10; vbe=0.7; icbo25=1e-6; beta=(150+200)/2; 
vbb=vcc*rb2/(rb1+rb2); 
rb=rb1*rb2/(rb1+rb2); 
ic=beta*(vbb-vbe)/(rb+(beta+1)*re); 
 
%stability factors are calculated 
svbe=-beta/(rb+(beta+1)*re); 
alpha=beta/(beta+1); 
svcc=1/(rc + (re/alpha)); 
svicbo=(rb+re)/(re+(rb+re)/alpha); 
sbeta=((rb+re)*(vbb-vbe+icbo25*(rb+re))/(rb+re+beta*re)^2); 
% Calculate changes in Ic for various temperatures 
 
t=25:1:100; 
len_t = length(t); 
dbeta = 50; dvcc=0.1; 
for i=1:len_t 
       dvbe(i)= -2e-3*(t(i)-25); 
       dicbo(i)=icbo25*(2^((t(i)-25)/10)-1); 
       dic(i)=svbe*dvbe(i)+svcc*dvcc... 
  +svicbo+dicbo(i)+sbeta*dbeta; 
end 
plot(t,dicbo) 
title('Change in collector current vs. temperature') 
xlabel('Temperature, degree C') 
ylabel('Change in collector current, A')  

 
Figure 12.9 shows  IC  versus temperature. 
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 Figure 12.9   IC  versus Temperature 
 
 
 
 

12.3 INTEGRATED CIRCUIT BIASING 
 
 
Biasing schemes for discrete electronic circuits are not suitable for integrated 
circuits (IC) because of the large  number of resistors and the large coupling 
and bypass capacitor required for biasing discrete electronic circuits.  It is 
uneconomical to fabricate IC resistors since they take a disproportionately 
large area on an IC chip.   In addition,  it is almost impossible to fabricate IC 
inductors.  Biasing of ICs is done using mostly transistors that are connected to 
create constant current sources.  Examples of integrated circuit biasing 
schemes are discussed in this section. 
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12.3.1   Simple current mirror 
 
A simple current mirror is shown in Figure 12.10.  The current mirror consists 
of two matched transistors Q1 and Q2 with their bases and emitters connected.   
The transistor   Q1 is connected as a diode by shorting the base to its collector. 
 

 

VCC

IR

IC1

Q1 Q2
IB1 IB2

RC

IO

  
 Figure 12.10  Simple Current Mirror 
 
 
From Figure 12.10, we observe that 
 

I
V V

RR
CC BE

C
=

−
                 (12.50) 

 
Using  KCL, we get 

 
I I I IR C B B= + +1 1 2       
 
       = +I IE B1 2                  (12.51) 

 
But  

 I
I

B
E

2
2

1
=

+β
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Assuming matched transistors 
 
I IB B1 2≅  
 
I IE E1 2≅                   (12.52) 
 

From Equations (12.51) and (12.52), we get 
 

I I
I

I IR E
E

E E= +
+

≅ +
+









 =

+
+









1

2
2 21

1
1

1
2
1β β

β
β

        (12.53) 

 
and 

I I I
I

O C B
E= = =
+2 2

2

1
β

β
β

 

 
Therefore 

I I IO R R=
+











+
+









 =

+
β

β
β
β

β
β1

1
2 2

               (12.54) 

 
 
I IO R≅  if  β >> 1                 (12.55) 
 
 

Equation (15.55) is true provided Q2 is in the active mode.   In the latter mode 
of transistor operation,  the device Q2 behaves as a current source.  For Q2 to 
be in the active mode, the following relation should be satisfied 
 

 V VCE CEsat2 >  
 
 
 
12.3.2 Wilson current source 

 
The Wilson current source, shown in Figure 12.11, achieves high output 
resistance and an output current that is less dependent on transistor  βF .   To 
obtain an expression for the output current, we assume that all three transistors 
are identical.   Thus 
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I IC C1 2=  
 
V VBE BE1 2=  
 
β β β βF F F F1 2 3= = =                  (12.56) 
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 Figure 12.11 Wilson Current Source 
 
 
 
Using KCL at the collector of transistor Q3 , we get 
 

I I I I
I

C R B R
O

F
1 3= − = −

β
 

therefore, 

( )I I IO F R C= −β 1                  (12.57) 
 
Using KCL at the emitter of Q3 , we obtain 
 
 I I I I I IE C B B C B3 2 1 2 1 12= + + = +  
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        = +






IC

F
1 1

2
β

                 (12.58) 

But 

 I I IF E
F

F
E0 3 31

= =
+

α
β

β
                (12.59) 

 
Substituting Equation (12.58) into (12.59), we have 
 

 I IF

F F
C0 11

1
2

=
+







 +








β
β β

                (12.60) 

 
Simplifying Equation (12.60), we get 
 

 I IC
F

F
1 0

1
2

=
+
+









β
β

                 (12.61)

   
Combining Equations (12.57) and (12.61), we obtain 
 

 I I IF R
F

F
0 0

1
2

= −
+
+

















β

β
β

                             (12.62) 

 
Simplifying Equation (12.62), we get 
 

 I IF F

F F
R0

2

2

2
2 2

=
+

+ +








β β
β β

 

 

       = 1
2
2 22−

+ +








β βF F
RI                 (12.63) 

 
For reasonable values of βF     
 

 
2
2 2

12β βF F+ +





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 <<  
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and Equation (12.63) becomes 
 
  I I R0 ≅  
 
Thus, β  has little effect on the output current,  and  
 

 I
V V V

RR
CC BE BE

C
=

− −3 1                 (12.64) 

 
 
Example 12.4 
 
For Figures 12.10 and 12.11, what are the percentage difference between the 
reference and output currents for the  βF   from 40  to  200.  Assume that for 
both figures, V VCC =10 , R KC = 50 Ω  and V VBE = 0 7. .  
 
Solution 
 
We use Equation (12.50) to calculate I R  and Equation (12.53) to find I0  of 
the simple current mirror.  Similarly,  we use Equation (12.64) to find  I R  and 
Equation (12.63) to calculate  I0  of the Wilson current  source. 
 
MATLAB Script 
 

% Integrated circuit Biasing 
vcc=10; rc=50e3; vbe=0.7; 
beta =40:5:200;  ir1=(vcc-vbe)/rc; 
ir2=(vcc-2*vbe)/rc;  m=length(beta); 
for i=1:m 
   io1(i) = beta(i)*ir1/(beta(i) + 2); 
   pd1(i)=abs((io1(i)-ir1)*100/ir1); 
   io2(i)=(beta(i)^2+2*beta(i))/(beta(i)^2+2*beta(i)+2); 
   pd2(i)=abs((io2(i)*ir2-ir2)*100/ir2); 
end 
subplot(211), plot(beta,pd1) 
%title('error for simple current mirror') 
xlabel('Transistor beta') 
ylabel('Percentage error') 
text(90,5,'Error for simple current mirror') 
subplot(212),plot(beta,pd2) 
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%title('Error for Wilson current mirror') 
xlabel('Transistor beta') 
ylabel('Percentage error') 
text(90, 0.13, 'Error for Wilson current source') 

 
Figure 12.12 shows the percentage errors obtained for the simple current 
mirror and Wilson current source. 
 

 
 

Figure 12.12   Percentage Error between Reference and Output  
Currents for Simple Current Mirror and Wilson 
Current Source 
 
 

 
12.4 FREQUENCY RESPONSE OF COMMON EMITTER  

 AMPLIFIER 
 
 
The common-emitter amplifier, shown in Figure 12.13, is capable of 
generating a relatively high current and voltage gains.  The input resistance is 
medium and is essentially independent of the load resistance RL .   The output 
resistance is relatively high and is essentially independent of the source 
resistance. 
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The coupling capacitor, CC1 , couples the source voltage vS   to the biasing 
network.  Coupling capacitor CC2  connects  the collector resistance RC  to 
the load RL .   The bypass capacitance  CE  is used to increase the midband 
gain, since it effectively short circuits the emitter resistance RE  at midband 
frequencies. The resistance RE   is needed for bias stability. The external 
capacitors CC1 , CC2 , CE   will influence the low frequency response of the 
common emitter amplifier.  The internal capacitances of the transistor will 
influence the high frequency cut-off.  The overall gain of the common-emitter 
amplifier can be written as 
 

( ) ( )
( )( )( )( )A s

A s s w

s w s w s w s w
m z

L L L H

=
+

+ + + +

2

1 2 3 1
            (12.65) 

 
where 
 AM  is the midband gain. 
 wH  is the frequency of the dominant high frequency pole 

w w wL L L1 2 3, ,  are low frequency poles introduced by the  
  coupling and bypass capacitors 
wZ  is the zero introduced by the bypass capacitor.                 
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RB2
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RC CC2
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CE

VCC
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 Figure 12.13  Common Emitter Amplifier 
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The midband gain is obtained by short circuiting all the external capacitors and 
open circuiting the internal capacitors.  Figure 12.14 shows the equivalent for 
calculating the midband gain.  
 

Vs

RS

RB π
r

Is Ib

rce RC RL Vo

+

-

Beta*I B

 
 
 
 Figure 12.14  Equivalent Circuit for Calculating Midband Gain  

 
 
From Figure 12.14, the midband gain,  Am ,   is 
 

[ ] [ ]A
V
V

r R R
R

R r R R rm
O

S
CE C L

B

B S B

= = −
+











+













β
π π

1
              (12.66) 

 
It can be shown that the low frequency poles, w w wL L L1 2 3, , , can be obtained 
by the following equations  

 

τ1
1

1
1

= =
w

C R
L

C IN                  (12.67) 

where 

[ ]R R R rIN S B= + π                  (12.68) 

 

( )[ ]τ 2
2

2
1

= = +
w

C R R r
L

C L C ce                (12.69) 

 
and 

τ 3
3

1
= =

w
C R

L
E E

'                  (12.70) 

 
where 
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R R
r R R

E E
F

B S

F

' =
+

+
+























π

β β1 1
               (12.71) 

 
and the zero 

w
R CZ

E E
=

1
                  (12.72) 

 
Normally, w wZ L< 3  and the low frequency cut-off wL  is larger than the 
largest pole frequency.  The low frequency cut-off can be approximated as 
 

 ( ) ( ) ( )w w w wL L L L≅ + +1

2

2

2

3

2
               (12.73) 

 
The high frequency equivalent circuit of the common-emitter amplifier is 
shown in Figure 12.15. 
  

Rs

RB rV
π

rx

C
π

µc
C

rce Rc RL
π

B B'

Vs gmV Voπ

 
 
 Figure 12.15     Equivalent Circuit of CE Amplifier at High  
   Frequencies 
 
In Figure 12.15, Cµ  is the collector-base capacitance, Cπ is the emitter to 

base capacitance, rX  is the resistance of silicon material of the base region 
between the base terminal B and an internal or intrinsic base terminal B’.  
Using the Miller Theorem, it can be shown that the 3-dB frequency at high 
frequencies is approximately given as 

 

( )[ ]( )w r r R R CH x B S T
− = +1

π                (12.74) 

 
where 

( )[ ]C C C g R RT m L C= + +π µ 1                (12.75) 

 
and 
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g
I
Vm

C

T
=                   (12.76) 

 
In the following example, MATLAB is used to obtain the frequency response 
of a common-emitter amplifier. 
 
 
 
Example 12.5 
 
For a CE amplifier shown in Figure 12.13, 
β

µ µ µ
π µ= = = = = =

= = = = = =
= = = =

150 2 4 100 5 10
60 15 2 4 150

60 40 100 10
1 2

1 2

, , , , , ,
, . , , , ,

, , , .

R K R K C pF C pF V V
r r K R K C F C F C F
R K R K R r

L C CC

ce o E C C E

B B S x

Ω Ω

Ω Ω
Ω Ω Ω Ω

 

Use MATLAB to plot the magnitude response of the amplifier. 
 
 

Solution 
 
Using  Equations (12.67), (12.69), (12.70) and (12.74) are used to calculate the 
poles of Equation (12.65).  The zero of the overall amplifier gain is calculated 
using Equation (12.66).  The MATLAB program is as follows: 
 
MATLAB Script 
 

%Frequency response of CE Amplifier 
rc=4e3; rb1=60e3; rb2=40e3; rs=100; rce=60e3; 
re=1.5e3; rl=2e3; beta=150; vcc=10; vt=26e-3; vbe =0.7; 
cc1=2e-6; cc2=4e-6; ce=150e-6;, rx=10; cpi=100e-12; 
cmu=5e-12; 
%  Ic is calculated 
rb = (rb1 * rb2)/(rb1 + rb2); 
vbb = vcc * rb2/(rb1 + rb2); 
icq = beta * (vbb - vbe)/(rb + (beta + 1)*re); 
 
% Calculation of low frequency poles 
% using equations (12.67), (12.69) and (12.70) 
rpi=beta * vt/icq; 
rb_rpi=rpi * rb/(rpi + rb); 
rin=rs + rb_rpi; 
wl1=1/(rin * cc1); 
rc_rce=rc * rce/(rc + rce); 
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wl2=1/(cc2 * (rl + rc_rce)); 
rb_rs=rb * rs/(rb + rs); 
rx1=(rpi + rb_rs)/(beta + 1); 
re_prime=re * rx1/(re + rx1); 
wl3=1/(re_prime * ce); 
 
% Calculate the low frequency zero using equation (12.72) 
wz = 1/(re*ce); 
% Calculate the high frequency pole using equation (12.74) 
gm = icq/vt; 
rbrs_prx = ( rb * rs/(rb + rs)) + rx; 
rt = (rpi * rbrs_prx)/(rpi + rbrs_prx); 
rl_rc = rl * rc/(rl + rc); 
ct = cpi + cmu * (1 + gm * rl_rc); 
wh = 1/(ct * rt); 
% Midband gain is calculated 
rcercrl = rce * rl_rc/(rce + rl_rc); 
am = -beta * rcercrl * (rb/(rb + rpi)) * (1/(rin)); 
 
% Frequency response calculation using equation (12.65) 
a4 = 1; a3 = wl1 + wl2 + wl3 + wh; 
a2 = wl1*wl2 + wl1*wl3 + wl2*wl3 + wl1*wh + wl2*wh + wl3*wh; 
a1 = wl1*wl2*wl3 +wl1*wl2*wh + wl1*wl3*wh + wl2*wl3*wh; 
a0 = wl1*wl2*wl3*wh; 
den=[a4 a3 a2 a1 a0]; 
b3 = am*wh; 
b2 = b3*wz; b1 =0; b0 = 0; 
num = [b3 b2 b1 b0]; 
w = logspace(1,10); 
h = freqs(num,den,w); 
mag = 20*log10(abs(h)); 
f = w/(2*pi); 
% Plot the frequency response 
semilogx(f,mag,'w') 
title('Magnitude Response') 
xlabel('Frequency, Hz') 
ylabel('Gain, dB') 
axis([1, 1.0e10, 0, 45]) 

 
The frequency response is shown in Figure 12.16. 
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 Figure 12.16  Frequency Response of a CE Amplifier 
 
 
 
 
 

12.5 MOSFET CHARACTERISTICS 
 
 
Metal-oxide-semiconductor field effect transistor (MOSFET) is a four-terminal 
device.  The terminals of the device are the gate, source, drain, and substrate.  
There are two types of mosfets:  the enhancement type and the depletion type.  
In the enhancement type MOSFET, the channel between the source and drain 
has to be induced by applying a voltage on the gate.  In the depletion type 
mosfet, the structure of the device is such that there exists a channel between 
the source and drain. Because of the oxide insulation between the gate and the 
channel,  mosfets   have high input resistance. The electronic symbol of a 
mosfet is shown in Figure 12.19. 
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   (a)    (b) 
   
 Figure 12.17  Circuit Symbol of (a) N-channel and  
   (b) P-channel MOSFETs 
 
 
Mosfets can be operated in three modes:  cut-off, triode, and saturation 
regions.  Because the enhancement mode mosfet  is widely used,  the 
presentation in this section will be done using an enhancement-type mosfet.  In 
the latter device, the channel between the drain and source has to be induced 
by applying a voltage between the gate and source.  The voltage needed to 
create the channel is called the threshold voltage, VT .   For an n-channel 
enhancement-type mosfet , VT  is positive and for a p-channel device it is 
negative.   
 
 
Cut-off Region 
 
For an n-channel mosfet, if the gate-source voltage VGS  satisfies the condition 

 
V VGS T<                  (12.77) 

 
then the device is cut-off.  This implies that the drain current is zero for all 
values of the drain-to-source voltage. 
 
 
Triode Region 
 
When V VGS T>  and VDS  is small, the mosfet will be in the triode region.  In 
the latter region, the device behaves as a non-linear voltage-controlled 
resistance.  The  I-V characteristics are given by 
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( )[ ]I k V V V VD n GS T DS DS= − −2 2                (12.78) 
 
provided 

 
V V VDS GS T≤ −                  (12.79) 

 
where 

k
t

W
L

C W
Ln

n ox

ox

n ox= = 





µ εε µ
2 2

                (12.80) 

 
and 

µn   is surface mobility of electrons 
ε    is permittivity of free space ( 8.85 E-14 F/cm)  
εox    is dielectric constant of  SiO2 
tox   is thickness of the oxide 
L     is length of the channel 
W    is width of the channel 
 

 
 
Saturation Region 
 
Mosfets can operate in  the saturation region.   A  mosfet will be in saturation 
provided 

 
V V VDS GS T≥ −                  (12.81) 

 
and  I-V characteristics are given as  

 

( )I k V VD n GS T= −
2

                 (12.82) 
 
The dividing locus between the triode and saturation regions is obtained by 
substituting 

 
V V VDS GS T= −                  (12.83) 

 
into either Equation (12.78) or (12.82), so we get 
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I k VD n DS= 2                   (12.84) 
 
In the following example, I-V characteristics and the locus that separates triode 
and saturation regions are obtained using MATLAB. 
 
 
 
Example 12.6 

 
For an n-channel enhancement-type MOSFET with k mA Vn = 1 2/  and 
V V=15. ,  use  MATLAB  to  sketch  the  I-V  characteristics  for 
V VGS = 4 6 8, ,  and for VDS  between  0  and  12 V .   
 
 
Solution 
 
MATLAB  Script 
 

% I-V characteristics of mosfet 
% 
kn=1e-3; vt=1.5; 
vds=0:0.5:12; 
vgs=4:2:8; 
m=length(vds); 
n=length(vgs); 
 
for i=1:n 
 for j=1:m 
    if vgs(i) < vt 
  cur(i,j)=0; 
    elseif vds(j) >= (vgs(i) - vt) 
  cur(i,j)=kn * (vgs(i) - vt)^2; 
    elseif vds(j) < (vgs(i) - vt) 
  cur(i,j)= kn*(2*(vgs(i)-vt)*vds(j) - vds(j)^2); 
    end 
        end 
end 
plot(vds,cur(1,:),'w',vds,cur(2,:),'w',vds,cur(3,:),'w') 
xlabel('Vds, V') 
ylabel('Drain Current,A')  
title('I-V Characteristics of a MOSFET') 
text(6, 0.009, 'Vgs = 4 V') 
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text(6, 0.023, 'Vgs = 6 V') 
text(6, 0.045, 'Vgs = 8 V') 

 
 
Figure 12.18 shows the I-V characteristics. 
 

 
 
 Figure 12.18   I-V Characteristics of N-channel Enhancement-type  
   Mosfet 
 
 
 
 
12.6    BIASING OF MOSFET CIRCUITS 
 
 
A popular circuit for biasing discrete mosfet amplifiers is shown in Figure 
12.19.  The resistances  RG1  and RG2  will define  the gate voltage.  The 
resistance RS  improves  operating point stability. 
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 Figure 12.19  Simple Biasing Circuit for Enhancement-type NMOS 
 
 
Because of the insulated gate, the current that passes through the gate of the 
MOSFET is negligible.  The gate voltage is given as 
 

 V
R

R R
VG

G

G G
DD=

+
1

1 2
                 (12.85) 

 
The gate-source voltage VGS  is  
 
 V V I RGS G S S= −                  (12.86) 
 
For conduction of the MOSFET, the gate-source voltage VGS  should be 
greater than the threshold voltage of the mosfet,  VT .    Since I ID S= , 
Equation (12.86) becomes 
 
 V V I RGS G D S= −                  (12.87) 
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The drain-source voltage is obtained by using KVL for the drain-source circuit 
 
 V V I R I RDS DD D D S S= − −  
   
         = − −V I R RDD D D S( )                   (12.88)  
 
For proper operation of the bias circuit, 
 
 V VGS T>                     (12.89) 
 
When Equation (12.89) is satisfied, the MOSFET can either operate in the 
triode or saturation  region.  To obtain the drain current, it is initially assumed 
that the device is in saturation and Equation (12.82) is used to calculate I D .   
Equation (12.81) is then used to confirm  the assumed region of operation.   If 
Equation (12.82) is not satisfied, then Equation (12.78) is used to calculate I D .  
The method is illustrated by the following example. 
 
 
 
Example 12.7 
 
For Figure 12.19, VT   = 2 V, kn  = 0.5 mA/V2, VDD  = 9V, 
R R MG G1 2 10= = Ω ,  R R KS D= =10 Ω .    Find I D  and  VDS . 
 
 
Solution 
 
Substituting Equation (12.86) into Equation (12.82), we have 
 

 ( )I k V I R Vn g D D T= − −
2

               (12.90) 

 
Simplifying Equation (12.90), we have 
 

[ ] ( )0 1 22 2
2

= − + − + −k R I V V R I k V Vn D D g T D D g T( )              (12.91) 

 
The above quadratic equation is solved to obtain I D .  Two solutions of  I D   
are obtained.  However, only one  is sensible and possible.  The possible one is  
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the one that will make V VGS T> .   With the possible value of  I D  obtained,  
VDS  is calculated using Equation (12.88).  It is then verified whether 
 
 V V VDS GS T> −  
 
The above condition ensures saturation of the device.    If the device is not in 
saturation, then  substituting Equation (12.86) into  Equation (12.78), we get 
 

( )[ ]I k V I R V V R R I V R R ID n g D D T DD D S D DD D S D= − − − + − − +2
2

( )( ( ) ) ( )      (12.92) 

 
Simplifying Equation (12.92), we get the quadratic equation 
 

[ ]0 2

2 2 2 1

2

2 2

2

= + + +

+ + − − − + −





+ − −

I R R R R R

I V R R V R V V R R k

V V V V

D S D D D S

D DD D S DD D g T D S
n

g T DD DD

( ) ( )

( ) ( )( )

( )

        (12.93) 

 
Two roots are obtained by solving Equation (12.93).  The sensible and 
possible root is the one that will make 
 
 V VGS T>  
 
The MATLAB program for finding I D  is shown below. 
 
MATLAB Script 
 

% 
% Analysis of MOSFET bias circuit 
% 
diary ex12_7.dat 
diary on 
vt=2; kn=0.5e-3; vdd=9; 
rg1=10e6; rg2=10e6; rs=10e3; rd=10e3; 
vg=vdd * rg2/(rg1 + rg2); 

 
% Id is calculated assuming device is in saturation 
 
a1=kn*(rd^2); 
a2=-(1 + 2*(vg - vt)*rd * kn); 
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a3=kn * (vg - vt)^2; 
p1=[a1,a2,a3]; 
r1=roots(p1); 
 
% check for the sensible value of the drain current 
  
vgs = vg - rs * r1(1); 
 if vgs > vt 
 id = r1(1); 
   else 
 id = r1(2); 

  % check for sensible value of the drain current 
   vgs = vg - rs*r2(1); 
 if vgs > vt 
   id = r2(1); 
  else 
   id=r2(2); 
 end 
vds=vdd - (rs + rd)*id; 
end 
 
% print out results 
fprintf('Drain current is %7.3e Amperes\n',id) 
fprintf('Drain-source voltage is %7.3e Volts\n', vds) 

 
The results are 
 

Drain current is 1.886e-004 Amperes 
Drain-source voltage is 5.228e+000 Volts 

 
 
The circuit shown in Figure 12.20 is a mosfet transistor with the drain 
connected to the gate.  The circuit is normally referred to as diode-connected 
enhancement transistor. 
 
From Equation (12.88), the MOSFET is in saturation provided 
 

V V VDS GS T> −  
i.e.,   
 

V V VDS GS T− > −    or   V V VDS SG T+ > −  
 
or  
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V VDG T> −                  (12.94) 
 

          

VDS

D
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 Figure 12.20  Diode-connected Enhancement Type MOSFET 
 
 
 
Since VDG = 0  and  VT  is positive for n-channel MOSFET, the device is in 
saturation and  
 

 ( )i k V VD n GS T= −
2

                 (12.95) 
 
But if V VGS DS= , Equation (12.101) becomes 
 

 ( )i k V VD n DS T= −
2

 
 
The diode-connected enhancement mosfet can also be used to generate dc 
currents for nMOS and CMOS analog integrated circuits.  A circuit for 
generating dc currents that are constant multiples of a reference current is 
shown in Figure 12.21.  It is a MOSFET version of current mirror circuits 
discussed in Section 12.3. 
 
Assuming the threshold voltages of  the transistors  of Figure 12.21 are the 
same,  then since transistor T1 is in saturation, 
 

 ( )I k V VREF GS T= −1 1

2
                 (12.96) 

 
 
Since transistors T1 and  T2  are connected in parallel, we get 
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 V V VGS GS GS1 2= =                  (12.97) 
 
and   

 ( )I k V VGS T0 2 2

2
= −  

 

 ( )I k V VGS T0 2

2
= −                 (12.98) 
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 Figure 12.21   Basic MOSFET Current Mirror 
 
 
 
Combining Equations (12.96) and (12.98), the current 
 

 I I
k
kREF0

2

1
=







                 (12.99) 

 
and using Equation (12.74), Equation (12.99) becomes 
 

 
( )
( )I I
W

L
W

L
REF0

2

1

=














              (12.100) 
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Thus, I0  will be a multiple of I REF , and the scaling constant is determined by 
the device geometry.  In practice, because of the finite output resistance of 
transistor T2, I0  will be a function of the output voltage v0 . 
 
 
 
Example 12.8 
 
For the circuit shown in Figure 12.22,  R M L L m1 1 215 6= = =. , ,Ω µ   
W m W m1 212 18= =µ µ, ,  VT  = 2.0 V and VDD = 5  V.   Find the output 
current I VD GS1 1, ,  I0  and  R2 .  Assume that V0  = 2.5 V, µCOX  = 30 

µA V/ .2    Neglect channel length modulation. 
 

     

Vo

Io

T1 T2

R1 R2

VDD VDD

 
 
 Figure 12.22  Circuit for Example 12.8 
 
 
Solution 
 
Since T1 is in saturation, 
 

 ( )I k V V k V VD n GS T n DS T1 1

2

1
2= − = −( )            (12.101) 

 
 V V I RDS DD D= − 1 1               (12.102) 
 
Substituting Equation (12.100) into (12.99), we get 
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 ( )I k V V R ID n DD T D1 1 1 1

2
= − −  

 

 ( )I
k

V V V V R I R ID

n
DD T DD T D D

1

1

2

1 1 1
2

1
22= − − − +( )  

( )0 2
1

1
2

1
2

1
1

1

2
= − − +







 + −R I V V R

k
I V VD DD T

n
D DD T( )          (12.103) 

 
The above quadratic equation will have two solutions, but only one of the 
solution of  I D1  will be valid.  The valid solution will result in V VGS T> .   
 
Using equation (12.100), we obtain 
 

 
( )
( )I I
W

L
W

L
D0 1

2

1

=














              (12.104) 

 
and 

 R
V

I
=

−5 0

0
               (12.105) 

 
The MATLAB program is as follows: 
 
MATLAB Script 
 

% 
% Current mirror 
% 
diary ex12_8.dat 
diary on 
ucox = 30e-6; l1 = 6e-6; l2 = 6e-6; 
w1 = 12e-6; w2=18e-6; 
r1=1.5e6; vt=2.0; vdd=5; vout=2.5; 
 
% roots of quadratic equation(12.103) is obtained 
kn = ucox * w1/(2 * l1); 
a1 = r1^2; 
a2 = -2*(vdd - vt)*r1 - (1/kn); 
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a3 = (vdd - vt)^2; 
p = [a1,a2,a3]; 
i = roots(p); 
 
% check for realistic value of drain current 
vgs=vdd - r1*i(1); 
if vgs > vt 
 id1 = i(1); 
  else 
 id1 = i(2); 
end 
 
% output current is calculated from equation(12.100) 
% r2 is obtained using equation (12.105) 
iout = id1*w2*l1/(w1 * l2); 
r2=(vdd - vout)/iout; 
 
% print results 
fprintf('Gate-source Voltage of T1 is %8.3e Volts\n',vgs) 
fprintf('Drain Current of T1 is %8.3e Ampers\n', id1) 
fprintf('Drain Current Io is %8.3e Ampers\n', iout) 
fprintf('Resistance R2 is %8.3e Ohms\n', r2) 

 
 
The results are 
 

Gate-source Voltage of T1 is 1.730e+000 Volts 
Drain Current of T1 is 1.835e-006 Ampers 
Drain Current Io is 2.753e-006 Ampers 
Resistance R2 is 9.082e+005 Ohms 

 
 
 
 

12.7 FREQUENCY RESPONSE OF COMMON-SOURCE  
 AMPLIFIER 

 
 
The  common-source amplifier has characteristics similar to those of the 
common-emitter amplifier discussed in Section 12.4.  However, the common-
source amplifier has higher input resistance than that of  the  common-emitter 
amplifier.  The circuit for the common source amplifier is shown in Figure 
12.23. 
 

 

© 1999 CRC Press LLC 

 

© 1999 CRC Press LLC 



RI CC1

RG2

RG1

RD
CC2

RS
CS

R1

Vo
Vs

VDD

+

-

 
 
 Figure 12.23   Common-Source Amplifier 
 
The external capacitors C CC C1 2,  and CS  will influence the low frequency 
response.  The internal capacitances of the FET will affect the high frequency 
response of the amplifier.  The overall gain of the common-source amplifier 
can be written in a form similar to Equation (12.65). 
 
The midband gain, Am , is obtained from the midband equivalent circuit of the 
common-source amplifier.  This is shown in Figure 12.24.   The equivalent 
circuit is obtained by short-circuiting all the external capacitors and open-
circuiting all the internal capacitances of the FET. 
 

Vs

RI

RG rds RD RL Vo

gmVgs

Vgs

+

-  
 
 
 Figure 12.24   Midband Equivalent Circuit of Common-Source  
   Amplifier 
 
Using voltage division, 
 

 v
R

R R
vgs

G

I G
S=

+
               (12.106) 

 
From Ohm’s Law, 
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 ( )v g v r R Rm gs ds D L0 = −               (12.107) 
 
Substituting Equation (12.106) into (12.107), we obtain the midband gain as 
 

 ( )A
v
v

g
R

R R
r R Rm

s
m

G

G I
ds D L= = −

+






0             (12.108) 

 
At low frequencies, the small signal equivalent circuit of the common-source 
amplifier is shown in Figure 12.25. 
 

RS

+
VS

Vgs gmVgs rds

RD RL

CC2

VO

+

Cs

RG

CC1RI

+

-
-

 
 

Figure 12.25   Equivalent Circuit for Obtaining the Poles at Low  
   Frequencies of  Common-source Amplifier 
 
 
It can be shown that the low frequency poles due to  CC1  and  CC2 can be 
written as 

τ1
1

1
1

= ≅ +
w

C R R
L

C g I( )               (12.109) 

 

τ 2
2

2
1

= ≅ +
w

C R R r
L

C L D ds( )               (12.110) 

 
Assuming  rd  is very large, the pole due to the bypass capacitance CS  can be 
shown  to be 
 

τ 3
3

1
1

= ≅
+









w
C

R
g RL

S
S

m S

              (12.111) 

 
and  the zero of  CS  is 
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w
R CZ

S S
=

1
                (12.112) 

 
The 3-dB frequency at the low frequency can be  approximated as 
 

( ) ( ) ( )w w w wL L L L≅ + +1

2

2

2

3

2
             (12.113) 

 
For a single stage common-source amplifier, the source bypass capacitor is 
usually the determining factor in establishing the low  3-dB frequency. 
 
The high frequency equivalent circuit of  a common-source amplifier is shown 
in Figure 12.26.  In the figure, the internal capacitances of the FET, Cgs , Cgd  

and Cds  are shown.   The external capacitors of the common of common-
source amplifier are short-circuited at high frequencies. 
 

+
VS VO

+

RG

CgdRI

Cgs Cds rds RD RLgmVgs

-
-

 
 
 Figure 12.26   High Frequency Equivalent Circuit of Common- 
   source Amplifier 
 
 
Using the Miller theorem, Figure 12.26 can be simplified.   This is  shown in 
Figure  12.27. 
 
The voltage gain at high frequencies is 

( )( )A
v
v

R
R R

g R
s R R C sR CV

s

G

G I

m L

G I L

= ≅ −
+









+ +













0

1 21 1

'

'( )
           (12.114) 

 
where 

 ( )C C C g Rgs gd m L1 1= + + '               (12.115) 
and  

C C Cds gd2 = +                (12.116) 
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+
VS VO

+

RG

Cgs (1+gmR'L)

RI

Cgs Cds RL'Cgd

- gmVgs

-

 
 
 Figure 12.27   Simplified High Frequency Equivalent Circuit for  
   Common-source Amplifier 
 
 
 
The high frequency poles are 
 

 ( )w
C R RH

G I
1

1

1
=                (12.117) 

 

( )w
C R R r

H

L D ds

2

2

1
=               (12.118) 

 
The approximate high frequency cut-off is 
 

 w

w w

H

H H

=






 +









1

1 1

1

2

2

2
              (12.119) 

 
In the following example, MATLAB is used to obtain the midband gain, cut-
off frequencies and bandwidth of a common-source amplifier. 
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Example 12.9 
 
For the common-source amplifier, shown in Figure 12.23,  
C C F C FC C S1 2 1 50= = =µ µ, .  The  FET  parameters  are 
C C pF C pFgd ds gs= = =1 10, ,  g mA V r Km ds= =10 50/ , .Ω   

R K R K R K R
R M R M

D L S I

G G

= = = =
= =

8 10 2 50
5 51 2

Ω Ω Ω Ω
Ω Ω
, , , ,
, .

 

Determine (a) midband gain,  (b) the low frequency cut-off,  (c)  high      
frequency cut-off, and (d)  bandwidth of the amplifier. 
 
 
Solution 
 
MATLAB Script 
 

% 
% common-source amplifier 
% 
diary ex12_9.dat 
diary on 
rg1=5e6; rg2=5e6; rd=8e3; rl=10e3; 
ri=50; rs=2e3; rds=50e3; 
cc1=1e-6; cc2=1e-6; cs=50e-6; 
gm=10e-3; cgs=10e-12; cgd=1e-12; cds=1e-12; 
 
% Calculate midband gain using equation (12.108) 
a = (1/rds) + (1/rd) + (1/rl); 
rlprime = 1/a; 
rg = rg1*rg2/(rg1 + rg2); 
gain_mb = -gm*rg*rlprime/(ri + rg); 
 
% Calculate Low cut-off frequency using equation (12.113) 
t1 = cc1*(rg + ri); 
wl1 = 1/t1; 
rd_rds = (rd*rds)/(rd + rds); 
t2 = cc2 * (rl + rd_rds); 
wl2=1/t2; 
t3=cs * rs/(1 + gm * rs); 
wl3=1/t3; 
wl=sqrt(wl1^2 + wl2^2 + wl3^2); 
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% Calculate high frequency cut-off using equations (12.115 to 
12.119) 
c1=cgs + cgd * (1 + gm * rlprime); 
c2=cds + cgd; 
rg_ri=rg * ri/(rg + ri); 
wh1=1/(rg_ri * c1); 
wh2=1/(rlprime * c2); 
int_term = sqrt((1/wh1)^2 + (1/wh2)^2); 
wh = 1/int_term; 
bw = wh-wl; 
 
%  Print results 
fprintf('Midband Gain is %8.3f\n', gain_mb) 
fprintf('Low frequency cut-off is %8.3e\n', wl) 
fprintf('High frequency cut-off is %8.3e\n', wh) 
fprintf('Bandwidth is %8.3e Hz\n', bw) 

 
The results are 
 

Midband Gain is  -40.816 
Low frequency cut-off is 2.182e+002 
High frequency cut-off is 1.168e+008 
Bandwidth is 1.168e+008 Hz 
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EXERCISES  
 
12.1 For the data provided in Example 12.2, Use MATLAB to sketch the  

output characteristics for VBE = 0 3 05 0 7. , . , . V.  Do not neglect the 
effect of VAF   on the collector current. 

 
 
12.2 For the self-bias circuit, shown in Figure 12.6, the collector current  

involving ICBO   is given by  Equation (12.47).  Assuming that  
R KB1 75= Ω , R KB2 25= Ω , R KE = 1 Ω , R KC = 7 5. Ω , 
βF =100,  and at 25o C, VBE  = 0.6 V  and ICBO   =  0.01 µA,     
determine the collector currents for temperatures between 25 oC and 
85  oC.  If RE  is changed to 3 KΩ , what will be the value of IC ? 

  
 
12.3 For Figure 12.13, if  R KB1 50= Ω , R KB2 40= Ω , rS = 50 Ω ,  

rX = 10 Ω , R KL = 5 Ω , R KC = 5 Ω , r Kce = 100 Ω ,  
C C FC C1 2 2= = µ , C pF C pFπ µ= =50 2, ,  βF =100,  VCC  
= 10 V,   explore the low frequency response  for the following values 
of  RE :  0.1 KΩ, 1 KΩ,  5 KΩ.  Calculate the high frequency cut-off 
for RE  = 0.1 KΩ. 

 
 
12.4 For the Widlar current source, shown in Figure P12.4, determine the  

output current if   R KC = 40 Ω , VCC  = 10 V, VBE1  = 0.7  V and  
R K2 25= Ω . 
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Figure P12.4  Widlar Current Source 
 
 
12.5 For the n-channel enhancement-type MOSFET with  

k mA Vn = 2 2/  and V VT =1 ,   write a  MATLAB program to 
plot the triode characteristics for VGS = 2 3 4 5, , ,  V when 
V VDS <1 .  

 
12.6 For Figure 12.19, VT   = 1.5 V, kn  = 0.5 mA/V2, VDD  = 10V,  

R MG1 10= Ω,   R MG2 12= Ω,  and R KD = 10 Ω .   Find I D  
for the following values of R KS : , , , .2 4 6 8 Ω   Indicate the region 
of operation for each value of RS . 

 
12.7 For the common-source amplifier shown in Figure 12.23,  
 R K R M R K RD L SB S= = = =10 1 15 100Ω Ω Ω Ω, , . , ,
 R M R M C C FG G C C1 2 1 210 10 2= = = =Ω Ω, , ,µ   
 C FS = 40 µ .    The FET parameters are C pFgs =10 ,  

 C C pFgd ds= =15. ,  g mA Vm = 5 / ,  and 

 r Kds =100 Ω.    Use MATLAB to plot the frequency response of     
 the amplifier. 
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